976 resultados para Quebec (city)
Resumo:
Interrogation techniques for fiber Bragg grating sensor arrays need particular attention in the case of structural health monitoring applications involving dynamic strain measurement. Typically the performance of the sensing system is dependent on both the sensor type and the interrogation method employed. A novel interrogation system is proposed here that consists of different interrogation units for each sensor in the array, each unit comprising of a circulator, chirped grating and a Mach-Zehnder interferometer. We present an analysis that consists of tracking the spectral changes as the light passes through various elements in the interrogation system. This is expected to help in the optimization of sensor and interrogation elements leading to improved performance of the health monitoring system.
Resumo:
A decode and forward protocol based Trellis Coded Modulation (TCM) scheme for the half-duplex relay channel, in a Rayleigh fading environment, is presented. The proposed scheme can achieve any spectral efficiency greater than or equal to one bit per channel use (bpcu). A near-ML decoder for the suggested TCM scheme is proposed. It is shown that the high Signal to Noise Ratio (SNR) performance of this near-ML decoder approaches the performance of the optimal ML decoder. Based on the derived Pair-wise Error Probability (PEP) bounds, design criteria to maximize the diversity and coding gains are obtained. Simulation results show a large gain in SNR for the proposed TCM scheme over uncoded communication as well as the direct transmission without the relay.
Resumo:
The design of modulation schemes for the physical layer network-coded two way wireless relaying scenario is considered. It was observed by Koike-Akino et al. for the two way relaying scenario, that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference which occurs at the relay during the MA Phase and all these network coding maps should satisfy a requirement called exclusive law. We extend this approach to an Accumulate-Compute and Forward protocol which employs two phases: Multiple Access (MA) phase consisting of two channel uses with independent messages in each channel use, and Broadcast (BC) phase having one channel use. Assuming that the two users transmit points from the same 4-PSK constellation, every such network coding map that satisfies the exclusive law can be represented by a Latin Square with side 16, and conversely, this relationship can be used to get the network coding maps satisfying the exclusive law. Two methods of obtaining this network coding map to be used at the relay are discussed. Using the structural properties of the Latin Squares for a given set of parameters, the problem of finding all the required maps is reduced to finding a small set of maps. Having obtained all the Latin Squares, the set of all possible channel realizations is quantized, depending on which one of the Latin Squares obtained optimizes the performance. The quantization thus obtained, is shown to be the same as the one obtained in [7] for the 2-stage bidirectional relaying.
Resumo:
The bilateral filter is known to be quite effective in denoising images corrupted with small dosages of additive Gaussian noise. The denoising performance of the filter, however, is known to degrade quickly with the increase in noise level. Several adaptations of the filter have been proposed in the literature to address this shortcoming, but often at a substantial computational overhead. In this paper, we report a simple pre-processing step that can substantially improve the denoising performance of the bilateral filter, at almost no additional cost. The modified filter is designed to be robust at large noise levels, and often tends to perform poorly below a certain noise threshold. To get the best of the original and the modified filter, we propose to combine them in a weighted fashion, where the weights are chosen to minimize (a surrogate of) the oracle mean-squared-error (MSE). The optimally-weighted filter is thus guaranteed to perform better than either of the component filters in terms of the MSE, at all noise levels. We also provide a fast algorithm for the weighted filtering. Visual and quantitative denoising results on standard test images are reported which demonstrate that the improvement over the original filter is significant both visually and in terms of PSNR. Moreover, the denoising performance of the optimally-weighted bilateral filter is competitive with the computation-intensive non-local means filter.
Resumo:
We address the problem of denoising images corrupted by multiplicative noise. The noise is assumed to follow a Gamma distribution. Compared with additive noise distortion, the effect of multiplicative noise on the visual quality of images is quite severe. We consider the mean-square error (MSE) cost function and derive an expression for an unbiased estimate of the MSE. The resulting multiplicative noise unbiased risk estimator is referred to as MURE. The denoising operation is performed in the wavelet domain by considering the image-domain MURE. The parameters of the denoising function (typically, a shrinkage of wavelet coefficients) are optimized for by minimizing MURE. We show that MURE is accurate and close to the oracle MSE. This makes MURE-based image denoising reliable and on par with oracle-MSE-based estimates. Analogous to the other popular risk estimation approaches developed for additive, Poisson, and chi-squared noise degradations, the proposed approach does not assume any prior on the underlying noise-free image. We report denoising results for various noise levels and show that the quality of denoising obtained is on par with the oracle result and better than that obtained using some state-of-the-art denoisers.
Resumo:
The bilateral filter is a versatile non-linear filter that has found diverse applications in image processing, computer vision, computer graphics, and computational photography. A common form of the filter is the Gaussian bilateral filter in which both the spatial and range kernels are Gaussian. A direct implementation of this filter requires O(sigma(2)) operations per pixel, where sigma is the standard deviation of the spatial Gaussian. In this paper, we propose an accurate approximation algorithm that can cut down the computational complexity to O(1) per pixel for any arbitrary sigma (constant-time implementation). This is based on the observation that the range kernel operates via the translations of a fixed Gaussian over the range space, and that these translated Gaussians can be accurately approximated using the so-called Gauss-polynomials. The overall algorithm emerging from this approximation involves a series of spatial Gaussian filtering, which can be efficiently implemented (in parallel) using separability and recursion. We present some preliminary results to demonstrate that the proposed algorithm compares favorably with some of the existing fast algorithms in terms of speed and accuracy.
Resumo:
Crowd flow segmentation is an important step in many video surveillance tasks. In this work, we propose an algorithm for segmenting flows in H.264 compressed videos in a completely unsupervised manner. Our algorithm works on motion vectors which can be obtained by partially decoding the compressed video without extracting any additional features. Our approach is based on modelling the motion vector field as a Conditional Random Field (CRF) and obtaining oriented motion segments by finding the optimal labelling which minimises the global energy of CRF. These oriented motion segments are recursively merged based on gradient across their boundaries to obtain the final flow segments. This work in compressed domain can be easily extended to pixel domain by substituting motion vectors with motion based features like optical flow. The proposed algorithm is experimentally evaluated on a standard crowd flow dataset and its superior performance in both accuracy and computational time are demonstrated through quantitative results.
Resumo:
Salient object detection has become an important task in many image processing applications. The existing approaches exploit background prior and contrast prior to attain state of the art results. In this paper, instead of using background cues, we estimate the foreground regions in an image using objectness proposals and utilize it to obtain smooth and accurate saliency maps. We propose a novel saliency measure called `foreground connectivity' which determines how tightly a pixel or a region is connected to the estimated foreground. We use the values assigned by this measure as foreground weights and integrate these in an optimization framework to obtain the final saliency maps. We extensively evaluate the proposed approach on two benchmark databases and demonstrate that the results obtained are better than the existing state of the art approaches.
Resumo:
The utility of canonical correlation analysis (CCA) for domain adaptation (DA) in the context of multi-view head pose estimation is examined in this work. We consider the three problems studied in 1], where different DA approaches are explored to transfer head pose-related knowledge from an extensively labeled source dataset to a sparsely labeled target set, whose attributes are vastly different from the source. CCA is found to benefit DA for all the three problems, and the use of a covariance profile-based diagonality score (DS) also improves classification performance with respect to a nearest neighbor (NN) classifier.
Resumo:
Three regimes of fast DoD jetting behaviour for solutions of mono-disperse linear polymers have been linked to the underlying polymer molecular chains and their fully extended length L in good solvents. This allows scaling laws in molecular weight to be predicted and applied to experimental jetting results from different DoD print heads. The higher extensional flows encountered in high speed jetting in viscous solvents can fully stretch linear molecules outside the nozzle, permitting jetting of higher polymer content than for purely elastic behaviour. These results are significant for DoD printing at raised jet speeds and will apply to any DoD print head jetting linear polymer solutions.
Resumo:
ABSTRACT High resolution records of mid-late Holocene hydro-climatic change are presented from Mer Bleue Bog, eastern Ontario. Past climatic changes in this region have previously been inferred from lake sediments, but rain-fed peatlands can offer additional insights into the spatial and temporal pattern of moisture availability. In this study, reconstructed water table depths are based on a testate amoeba-derived transfer function developed for the region and changes in bog surface wetness are compared with plant macrofossil and peat humification data.
RÉSUMÉ Nous présentons les enregistrements hautes résolutions des variations hydrologique durant la second moitié de l’Holocène pour les tourbières Mer Bleue á l’est de l'Ontario. Précédemment, les changements climatiques de cette région ont été dérivés à partir de prélèvement de sédiments de lac. Mais ils s’avèrent que les tourbières ombrotrophes offrir un éclairage supplémentaire sur les schémas de répartition spatiale et temporelle de la disponibilité de l'humidité. Dans cette étude, des profondeurs reconstruites de nappe phréatique sont basées sur un modèle de function de transfert d’amibes (Arcellinida) et des changements de l’humidité de surface de la tourbière sont comparés avec les macrofossils et au humification de tourbe dans une analyse multi-proxy.