32 resultados para Quaternions
Resumo:
This work is an extension to sedenions of the Cauchy-Riemann relations, following a similar earlier construction made by one of the authors (M. Borges) to quaternions and octonions, see [1], [2], [3]. © 2011 Academic Publications.
Resumo:
In recent years quaternionic functions have been an intense and prosperous object of research, and important results were determined [1]-[6]. Some of these results are similar to well known cases in one complex variable, op. cit. [5], [6]. In this paper the hypercomplex expansion of a function in a power series as well as determination of a Liouville's type theorem have been investigated to the quaternionic functions. In this case, it is observed that the Liouville's type theorem is true for second order derivatives, which differs from its classical version. © 2011 Academic Publications, Ltd.
Resumo:
Riemann surfaces, cohomology and homology groups, Cartan's spinors and triality, octonionic projective geometry, are all well supported by Complex Structures [1], [2], [3], [4]. Furthermore, in Theoretical Physics, mainly in General Relativity, Supersymmetry and Particle Physics, Complex Theory Plays a Key Role [5], [6], [7], [8]. In this context it is expected that generalizations of concepts and main results from the Classical Complex Theory, like conformal and quasiconformal mappings [9], [10] in both quaternionic and octonionic algebra, may be useful for other fields of research, as for graphical computing enviromment [11]. In this Note, following recent works by the autors [12], [13], the Cauchy Theorem will be extended for Octonions in an analogous way that it has recentely been made for quaternions [14]. Finally, will be given an octonionic treatment of the wave equation, which means a wave produced by a hyper-string with initial conditions similar to the one-dimensional case.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this work is to analyze the stability of the rotational motion’s artificial satellite using the Routh Hurwitz Algorithm (CRH) and the quaternions to describe the satellite’s attitude. This algorithm allows the investigation of the stability of the motion using the coefficients of the characteristic equation associated with the equation of the rotational motion in the linear form. The equations of the rotational motion are given by the four cinematic equations for the quaternion and the three equations of Euler for the spin velocity’s components. In the Euler equations are included the components of the gravity gradient torque (TGG) and the solar radiation torque (TRS). The TGG is generated by the difference of the Earth gravity force direction and intensity actuating on each satellite mass element and it depends on the mass distribution and the form of the satellite. The TRS is created by changing of the linear momentum, which happens due to the interactions of solar photons with the satellite surface. The equilibrium points are gotten by the equation of rotational motion and the CRH is applied in the linear form of these equations. Simulations are developed for small and medium satellites, but the gotten equilibrium points are not stable by CRH. However, when some of the eigenvalues of the characteristic equation are analyzed, it is found some equilibrium points which can be pointed out as stables for an interval of the time, due to small magnitude of the real part of these eigenvalue
Resumo:
Physics is in its development a major challenge to relate fields, this paper presents a proposal to relate classical fields of physics, ie the electric field, magnetic field and gravitational equations by time-dependent. The proposal begins with the work that determines the Cauchy-Riemann conditions for quaternions [1], and the determination of Laplace’s equation in four dimensions[3], it was possible to determine mathematical components important to make the couplings of classical fields discussed above.
Resumo:
This paper presents an application of Laplace's equation obtained from a quaternionic function that satisfies the Cauchy-Riemann conditions determined earlier by Borges and Machado [#!BorgesZeMarcio!#]. Therefore, we show that it is possible to express in a single equation gravity, electric and magnetic potential fields, and this expression can only be provided due to a function that will be called here the coupling function.
Resumo:
The present work shows a coupling of electrical and gravitational fields through Cauchy-Riemann conditions for quaternions present in a previous paper [1]. It is also obtained an extended version of the Laplace-like equations for quaternions, now written in terms of both electric and gravitational fields.
Resumo:
With the advance of mathematical methods throughout the centuries, in particular with respect to the differential calculus, the notion of fractional derivative emerged with Leibniz and later developed by several well known scientists. Today that formalism is well used in the study of diffusion phenomena among other areas. We extend the fractional indices to matricial indices and develop a formalism to handle this generalized derivative, as well as other operators, functions and functionals in mathematical physics, originally defined for natural indices. Here we only consider 2x2 hermitian and anti-hermitian matrices. These matrices are associated to the well known Pauli matrices and Hamilton's quaternions. Applications with mathematical physics functions are presented
Resumo:
Computer simulations play an ever growing role for the development of automotive products. Assembly simulation, as well as many other processes, are used systematically even before the first physical prototype of a vehicle is built in order to check whether particular components can be assembled easily or whether another part is in the way. Usually, this kind of simulation is limited to rigid bodies. However, a vehicle contains a multitude of flexible parts of various types: cables, hoses, carpets, seat surfaces, insulations, weatherstrips... Since most of the problems using these simulations concern one-dimensional components and since an intuitive tool for cable routing is still needed, we have chosen to concentrate on this category, which includes cables, hoses and wiring harnesses. In this thesis, we present a system for simulating one dimensional flexible parts such as cables or hoses. The modeling of bending and torsion follows the Cosserat model. For this purpose we use a generalized spring-mass system and describe its configuration by a carefully chosen set of coordinates. Gravity and contact forces as well as the forces responsible for length conservation are expressed in Cartesian coordinates. But bending and torsion effects can be dealt with more effectively by using quaternions to represent the orientation of the segments joining two neighboring mass points. This augmented system allows an easy formulation of all interactions with the best appropriate coordinate type and yields a strongly banded Hessian matrix. An energy minimizing process accounts for a solution exempt from the oscillations that are typical of spring-mass systems. The use of integral forces, similar to an integral controller, allows to enforce exactly the constraints. The whole system is numerically stable and can be solved at interactive frame rates. It is integrated in the DaimlerChrysler in-house Virtual Reality Software veo for use in applications such as cable routing and assembly simulation and has been well received by users. Parts of this work have been published at the ACM Solid and Physical Modeling Conference 2006 and have been selected for the special issue of the Computer-Aided-Design Journal to the conference.
Resumo:
Here an inertial sensor-based monitoring system for measuring and analyzing upper limb movements is presented. The final goal is the integration of this motion-tracking device within a portable rehabilitation system for brain injury patients. A set of four inertial sensors mounted on a special garment worn by the patient provides the quaternions representing the patient upper limb’s orientation in space. A kinematic model is built to estimate 3D upper limb motion for accurate therapeutic evaluation. The human upper limb is represented as a kinematic chain of rigid bodies with three joints and six degrees of freedom. Validation of the system has been performed by co-registration of movements with a commercial optoelectronic tracking system. Successful results are shown that exhibit a high correlation among signals provided by both devices and obtained at the Institut Guttmann Neurorehabilitation Hospital.
Resumo:
Fine copy of al-Būṣīrī's poem in praise of the Prophet accompanied by elucidation in Persian and Turkish.
Resumo:
Fine copy of Abū Naṣr al-Farāḥī's (d.1242) versification of al-Jamīʻ al-ṣaghīr fī al-furūʻ, the well-known legal treatise by Muḥammad ibn al-Ḥasan al-Shaybānī (d.804). Excerpts from Kashf al-ẓunūn addressing these two works appear on leaf affixed to 'title page' (p.5).