995 resultados para Quantum turbulence
Resumo:
One of the earliest cryptographic applications of quantum information was to create quantum digital cash that could not be counterfeited. In this paper, we describe a new type of quantum money: quantum coins, where all coins of the same denomination are represented by identical quantum states. We state desirable security properties such as anonymity and unforgeability and propose two candidate quantum coin schemes: one using black box operations, and another using blind quantum computation.
Resumo:
Presentation about information modelling and artificial intelligence, semantic structure, cognitive processing and quantum theory.
Study of industrially relevant boundary layer and axisymmetric flows, including swirl and turbulence
Resumo:
Micropolar and RNG-based modelling of industrially relevant boundary layer and recirculating swirling flows is described. Both models contain a number of adjustable parameters and auxiliary conditions that must be either modelled or experimentally determined, and the effects of varying these on the resulting flow solutions is quantified. To these ends, the behaviour of the micropolar model for self-similar flow over a surface that is both stretching and transpiring is explored in depth. The simplified governing equations permit both analytic and numerical approaches to be adopted, and a number of closed form solutions (both exact and approximate) are obtained using perturbation and order of magnitude analyses. Results are compared with the corresponding Newtonian flow solution in order to highlight the differences between the micropolar and classical models, and significant new insights into the behaviour of the micropolar model are revealed for this flow. The behaviour of the RNG-bas based models for swirling flow with vortex breakdown zones is explored in depth via computational modelling of two experimental data sets and an idealised breakdown flow configuration. Meticulous modeling of upstream auxillary conditions is required to correctly assess the behavior of the models studied in this work. The novel concept of using the results to infer the role of turbulence in the onset and topology of the breakdown zone is employed.
Resumo:
Measures and theories of information abound, but there are few formalised methods for treating the contextuality that can manifest in different information systems. Quantum theory provides one possible formalism for treating information in context. This paper introduces a quantum-like model of the human mental lexicon, and shows one set of recent experimental data suggesting that concept combinations can indeed behave non-separably. There is some reason to believe that the human mental lexicon displays entanglement.
Resumo:
A new immobilized flat plate photocatalytic reactor for wastewater treatment has been proposed in this study to avoid subsequent catalyst removal from the treated water. The reactor consists of an inlet, reactive section where catalyst is coated and an outlet parts. In order to optimize the fluid mixing and reactor design, this study aims to investigate the influence of baffles and its arrangement on the flat plate reactor hydrodynamics using computational fluid dynamics (CFD) simulation. For simulation, an array of baffles acting as turbulence promoters is inserted in the reactive zone of the reactor. In this regard, results obtained from the simulation of a baffled- flat plate photoreactor hydrodynamics for different baffle positions, heights and intervals are presented utilizing RNG k-ε turbulence model. Under the conditions simulated, the qualitative flow features, such as the development and separation of boundary layers, vortex formation, the presence of high shear regions and recirculation zones, and the underlying mechanism are examined. The influence of various baffle sizes on the distribution of pollutant concentration is also highlighted. The results presented here indicate that the spanning of recirculation increases the degree of interfacial distortion with a larger interfacial area between fluids which results in substantial enhancement in fluid mixing. The simulation results suggest that the qualitative and quantitative properties of fluid dynamics in a baffled reactor can be obtained which provides valuable insight to fully understand the effect of baffles and its arrangements on the flow pattern, behaviour, and feature.
Resumo:
We present an experimental demonstration of strong optical coupling between CdSequantum dots of different sizes which is induced by a surface plasmon propagating on a planar silver thin film. Attenuated total reflection measurements demonstrate the hybridization of exciton states, characterized by the observation of two avoided crossings in the energy dispersion measured for the interacting system.
Resumo:
Quantum dot - plasmon waveguide systems are of interest for the active control of plasmon propagation, and consequently, the development of active nanophotonic devices such as nano-sized optical transistors. This paper is concerned with how varying aspect ratio of the waveguide crosssection affects the quantum dot - plasmon coupling. We compare a stripe waveguide with an equivalent nanowire, illustrating that both waveguides have a similar coupling strength to a nearby quantum dot for small waveguide cross-section, thereby indicating that stripe lithographic waveguides have strong potential use in quantum dot –plasmon waveguide systems. We also demonstrate that changing the aspect ratio of both stripe and wire waveguides can increase the spontaneous emission rate of the quantum dot into the plasmon mode, by up to a factor of five. The results of this paper will contribute to the optimisation of quantum dot - plasmon waveguide systems and help pave the way for the development of active nanophotonics devices.
Resumo:
In natural estuaries, scalar diffusion and dispersion are driven by turbulence. In the present study, detailed turbulence measurements were conducted in a small subtropical estuary with semi-diurnal tides under neap tide conditions. Three acoustic Doppler velocimeters were installed mid-estuary at fixed locations close together. The units were sampled simultaneously and continuously at relatively high frequency for 50 h. The results illustrated the influence of tidal forcing in the small estuary, although low frequency longitudinal velocity oscillations were observed and believed to be induced by external resonance. The boundary shear stress data implied that the turbulent shear in the lower flow region was one order of magnitude larger than the boundary shear itself. The observation differed from turbulence data in a laboratory channel, but a key feature of natural estuary flow was the significant three dimensional effects associated with strong secondary currents including transverse shear events. The velocity covariances and triple correlations, as well as the backscatter intensity and covariances, were calculated for the entire field study. The covariances of the longitudinal velocity component showed some tidal trend, while the covariances of the transverse horizontal velocity component exhibited trends that reflected changes in secondary current patterns between ebb and flood tides. The triple correlation data tended to show some differences between ebb and flood tides. The acoustic backscatter intensity data were characterised by large fluctuations during the entire study, with dimensionless fluctuation intensity I0b =Ib between 0.46 and 0.54. An unusual feature of the field study was some moderate rainfall prior to and during the first part of the sampling period. Visual observations showed some surface scars and marked channels, while some mini transient fronts were observed.
Resumo:
Experimental results for a reactive non-buoyant plume of nitric oxide (NO) in a turbulent grid flow doped with ozone (O3) are presented. The Damkohler number (Nd) for the experiment is of order unity indicating the turbulence and chemistry have similar timescales and both affect the chemical reaction rate. Continuous measurements of two components of velocity using hot-wire anemometry and the two reactants using chemiluminescent analysers have been made. A spatial resolution for the reactants of four Kolmogorov scales has been possible because of the novel design of the experiment. Measurements at this resolution for a reactive plume are not found in the literature. The experiment has been conducted relatively close to the grid in the region where self-similarity of the plume has not yet developed. Statistics of a conserved scalar, deduced from both reactive and non-reactive scalars by conserved scalar theory, are used to establish the mixing field of the plume, which is found to be consistent with theoretical considerations and with those found by other investigators in non-reative flows. Where appropriate the reactive species means and higher moments, probability density functions, joint statistics and spectra are compared with their respective frozen, equilibrium and reaction-dominated limits deduced from conserved scalar theory. The theoretical limits bracket reactive scalar statistics where this should be so according to conserved scalar theory. Both reactants approach their equilibrium limits with greater distance downstream. In the region of measurement, the plume reactant behaves as the reactant not in excess and the ambient reactant behaves as the reactant in excess. The reactant covariance lies outside its frozen and equilibrium limits for this value of Vd. The reaction rate closure of Toor (1969) is compared with the measured reaction rate. The gradient model is used to obtain turbulent diffusivities from turbulent fluxes. Diffusivity of a non-reactive scalar is found to be close to that measured in non-reactive flows by others.
Resumo:
This position paper provides an overview of work conducted and an outlook of future directions within the field of Information Retrieval (IR) that aims to develop novel models, methods and frameworks inspired by Quantum Theory (QT).
Resumo:
Consider the concept combination ‘pet human’. In word association experiments, human subjects produce the associate ‘slave’ in relation to this combination. The striking aspect of this associate is that it is not produced as an associate of ‘pet’, or ‘human’ in isolation. In other words, the associate ‘slave’ seems to be emergent. Such emergent associations sometimes have a creative character and cognitive science is largely silent about how we produce them. Departing from a dimensional model of human conceptual space, this article will explore concept combinations, and will argue that emergent associations are a result of abductive reasoning within conceptual space, that is, below the symbolic level of cognition. A tensor-based approach is used to model concept combinations allowing such combinations to be formalized as interacting quantum systems. Free association norm data is used to motivate the underlying basis of the conceptual space. It is shown by analogy how some concept combinations may behave like quantum-entangled (non-separable) particles. Two methods of analysis were presented for empirically validating the presence of non-separable concept combinations in human cognition. One method is based on quantum theory and another based on comparing a joint (true theoretic) probability distribution with another distribution based on a separability assumption using a chi-square goodness-of-fit test. Although these methods were inconclusive in relation to an empirical study of bi-ambiguous concept combinations, avenues for further refinement of these methods are identified.
Resumo:
As computers approach the physical limits of information storable in memory, new methods will be needed to further improve information storage and retrieval. We propose a quantum inspired vector based approach, which offers a contextually dependent mapping from the subsymbolic to the symbolic representations of information. If implemented computationally, this approach would provide exceptionally high density of information storage, without the traditionally required physical increase in storage capacity. The approach is inspired by the structure of human memory and incorporates elements of Gardenfors’ Conceptual Space approach and Humphreys et al.’s matrix model of memory.
Resumo:
Compositionality is a frequently made assumption in linguistics, and yet many human subjects reveal highly non-compositional word associations when confronted with novel concept combinations. This article will show how a non-compositional account of concept combinations can be supplied by modelling them as interacting quantum systems.
Resumo:
In natural waterways and estuaries, the understanding of turbulent mixing is critical to the knowledge of sediment transport, stormwater runoff during flood events, and release of nutrient-rich wastewater into ecosystems. In the present study, some field measurements were conducted in a small subtropical estuary with micro-tidal range and semi-diurnal tides during king tide conditions: i. e., the tidal range was the largest for both 2009 and 2010. The turbulent velocity measurements were performed continuously at high-frequency (50Hz) for 60 h. Two acoustic Doppler velocimeters (ADVs) were sampled simultaneously in the middle estuarine zone, and a third ADV was deployed in the upper estuary for 12 h only. The results provided an unique characterisation of the turbulence in both middle and upper estuarine zones under the king tide conditions. The present observations showed some marked differences between king tide and neap tide conditions. During the king tide conditions, the tidal forcing was the dominant water exchange and circulation mechanism in the estuary. In contrast, the long-term oscillations linked with internal and external resonance played a major role in the turbulent mixing during neap tides. The data set showed further that the upper estuarine zone was drastically less affected by the spring tide range: the flow motion remained slow, but the turbulent velocity data were affected by the propagation of a transient front during the very early flood tide motion at the sampling site. © 2012 Springer Science+Business Media B.V.