935 resultados para Quantum Key Distribution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the on-going worldwide activity to develop forward looking standards for quantum key distribution (QKD) in the European Telecommunications Standards Institute (ETSI) QKD industry specification group (ISG). The long term goal is to develop a certification methodology that bridges the gap between theoretical proofs and practical implementations with imperfect devices. Current efforts are focused on the handling of side channels and characterization of the most relevant components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The security of quantum key distribution protocols is guaranteed by the laws of quantum mechanics. However, a precise analysis of the security properties requires tools from both classical cryptography and information theory. Here, we employ recent results in non-asymptotic classical information theory to show that information reconciliation imposes fundamental limitations on the amount of secret key that can be extracted in the finite key regime. In particular, we find that an often used approximation for the information leakage during one-way information reconciliation is flawed and we propose an improved estimate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deployment of Quantum Key Distribution forces the development of QKD-links to be operated in current and next-generation photonic metro-access networks. These highly heterogeneous architectures determine the conditions QKD-links need to be optimized for.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The postprocessing or secret-key distillation process in quantum key distribution (QKD) mainly involves two well-known procedures: information reconciliation and privacy amplification. Information or key reconciliation has been customarily studied in terms of efficiency. During this, some information needs to be disclosed for reconciling discrepancies in the exchanged keys. The leakage of information is lower bounded by a theoretical limit, and is usually parameterized by the reconciliation efficiency (or inefficiency), i.e. the ratio of additional information disclosed over the Shannon limit. Most techniques for reconciling errors in QKD try to optimize this parameter. For instance, the well-known Cascade (probably the most widely used procedure for reconciling errors in QKD) was recently shown to have an average efficiency of 1.05 at the cost of a high interactivity (number of exchanged messages). Modern coding techniques, such as rate-adaptive low-density parity-check (LDPC) codes were also shown to achieve similar efficiency values exchanging only one message, or even better values with few interactivity and shorter block-length codes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We realize an end-to-end no-switching quantum key distribution protocol using continuous-wave coherent light. We encode weak broadband Gaussian modulations onto the amplitude and phase quadratures of light beams. Our no-switching protocol achieves high secret key rate via a post-selection protocol that utilizes both quadrature information simultaneously. We establish a secret key rate of 25 Mbits/s for a lossless channel and 1 kbit/s for 90% channel loss, per 17 MHz of detected bandwidth, assuming individual Gaussian eavesdropping attacks. Since our scheme is truly broadband, it can potentially deliver orders of magnitude higher key rates by extending the encoding bandwidth with higher-end telecommunication technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The random switching of measurement bases is commonly assumed to be a necessary step of quantum key distribution protocols. In this paper we present a no-switching protocol and show that switching is not required for coherent-state continuous-variable quantum key distribution. Further, this protocol achieves higher information rates and a simpler experimental setup compared to previous protocols that rely on switching. We propose an optimal eavesdropping attack against this protocol, assuming individual Gaussian attacks. Finally, we investigate and compare the no-switching protocol applied to the original Bennett-Brassard 1984 scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A free space quantum key distribution system has been demonstrated. Consideration has been given to factors such as field of view and spectral width, to cut down the deleterious effect from background light levels. Suitable optical sources such as lasers and RCLEDs have been investigated as well as optimal wavelength choices, always with a view to building a compact and robust system. The implementation of background reduction measures resulted in a system capable of operating in daylight conditions. An autonomous system was left running and generating shared key material continuously for over 7 days. © 2009 Published by Elsevier B.V..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A szerzők tanulmányukban az információbiztonság egy merőben új, minőségi változást hozó találmányával, a kvantumkulcscserével (QKD-vel – quantum key distribution) foglalkoznak. Céljuk az, hogy az újdonságra mint informatikai biztonsági termékre tekintsenek, és megvizsgálják a bevezetéséről szóló vállalati döntés során felmerülő érveket, ellenérveket. Munkájuk egyaránt műszaki és üzleti szemléletű. Előbb elkülönítik a kvantumkulcscsere hagyományos eljárásokkal szembeni használatának motiváló tényezőit, és megállapítják, milyen körülmények között szükséges a napi működésben alkalmazni. Ezt követően a forgalomban is kapható QKD-termékek tulajdonságait és gyártóit szemügyre véve megfogalmazzák a termék széles körű elterjedésének korlátait. Végül a kvantumkulcscsere-termék bevezetéséről szóló vállalati döntéshozás különböző aspektusait tekintik át. Információbiztonsági és üzleti szempontból összehasonlítják az új, valamint a hagyományosan használt kulcscsereeszközöket. Javaslatot tesznek a védendő információ értékének becslésére, amely a használatbavétel költség-haszon elemzését támaszthatja alá. Ebből levezetve megállapítják, hogy mely szervezetek alkotják a QKD lehetséges célcsoportját. Utolsó lépésként pedig arra keresik a választ, melyik időpont lehet ideális a termék bevezetésére. _____ This study aims to illuminate Quantum Key Distribution (QKD), a new invention that has the potential to bring sweeping changes to information security. The authors’ goal is to present QKD as a product in the field of IT security, and to examine several pro and con arguments regarding the installation of this product. Their work demonstrates both the technical and the business perspectives of applying QKD. First they identify motivational factors of using Quantum Key Distribution over traditional methods. Then the authors assess under which circumstances QKD could be necessary to be used in daily business. Furthermore, to evaluate the limitations of its broad spread, they introduce the vendors and explore the properties of their commercially available QKD products. Bearing all this in mind, they come out with numerous factors that can influence corporate decision making regarding the installation of QKD. The authors compare the traditional and the new tools of key distribution from an IT security and business perspective. They also take efforts to estimate the value of the pieces of information to be protected. This could be useful for a subsequent cost–benefit analysis. Their findings try to provide support for determining the target audience of QKD in the IT security market. Finally the authors attempt to find an ideal moment for an organization to invest in Quantum Key Distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the suitability of an Einstein-Podolsky-Rosen entanglement source for Gaussian continuous-variable quantum key distribution at 1550 nm. Our source is based on a single continuous-wave squeezed vacuum mode combined with a vacuum mode at a balanced beam splitter. Extending a recent security proof, we characterize the source by quantifying the extractable length of a composable secure key from a finite number of samples under the assumption of collective attacks. We show that distances in the order of 10 km are achievable with this source for a reasonable sample size despite the fact that the entanglement was generated including a vacuum mode. Our security analysis applies to all states having an asymmetry in the field quadrature variances, including those generated by superposition of two squeezed modes with different squeezing strengths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein–Podolsky–Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of the secret key is the weakest link of many data encryption systems. Quantum key distribution (QKD) schemes provide attractive solutions [1], however their implementation remains challenging and their range and bit-rate are limited. Moreover, practical QKD systems, employ real-life components and are, therefore, vulnerable to diverse attack schemes [2]. Ultra-Long fiber lasers (UFLs) have been drawing much attention recently because of their fundamentally different properties compared to conventional lasers as well as their unique applications [3]. Here, we demonstrate a 100Bps, practically secure key distribution, over a 500km link, employing Raman gain UFL. Fig. 1(a) depicts a schematic of the UFL system. Each user has an identical set of two wavelength selective mirrors centered at l0 and l 1. In order to exchange a key-bit, each user independently choose one of these mirrors and introduces it as a laser reflector at their end. If both users choose identical mirrors, a clear signal develops and the bits in these cases are discarded. However if they choose complementary mirrors, (1, 0 or 0, 1 states), the UFL remains below lasing threshold and no signal evolves. In these cases, an eavesdropper can only detect noise and is unable to determine the mirror choice of the users, where the choice of mirrors represent a single key bit (e.g. Alice's choice of mirror is the key-bit). These bits are kept and added to the key. The absence of signal in the secure states faxilitates fast measurements to distinguish between the non-secure and the secure states and to determine the key-bit in the later case, Sequentially reapeating the single bit exchange protocol generate the entire keys of any desirable length. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Secure communications in wireless sensor networks operating under adversarial conditions require providing pairwise (symmetric) keys to sensor nodes. In large scale deployment scenarios, there is no prior knowledge of post deployment network configuration since nodes may be randomly scattered over a hostile territory. Thus, shared keys must be distributed before deployment to provide each node a key-chain. For large sensor networks it is infeasible to store a unique key for all other nodes in the key-chain of a sensor node. Consequently, for secure communication either two nodes have a key in common in their key-chains and they have a wireless link between them, or there is a path, called key-path, among these two nodes where each pair of neighboring nodes on this path have a key in common. Length of the key-path is the key factor for efficiency of the design. This paper presents novel deterministic and hybrid approaches based on Combinatorial Design for deciding how many and which keys to assign to each key-chain before the sensor network deployment. In particular, Balanced Incomplete Block Designs (BIBD) and Generalized Quadrangles (GQ) are mapped to obtain efficient key distribution schemes. Performance and security properties of the proposed schemes are studied both analytically and computationally. Comparison to related work shows that the combinatorial approach produces better connectivity with smaller key-chain sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Key distribution is one of the most challenging security issues in wireless sensor networks where sensor nodes are randomly scattered over a hostile territory. In such a sensor deployment scenario, there will be no prior knowledge of post deployment configuration. For security solutions requiring pairwise keys, it is impossible to decide how to distribute key pairs to sensor nodes before the deployment. Existing approaches to this problem are to assign more than one key, namely a key-chain, to each node. Key-chains are randomly drawn from a key-pool. Either two neighboring nodes have a key in common in their key-chains, or there is a path, called key-path, among these two nodes where each pair of neighboring nodes on this path has a key in common. Problem in such a solution is to decide on the key-chain size and key-pool size so that every pair of nodes can establish a session key directly or through a path with high probability. The size of the key-path is the key factor for the efficiency of the design. This paper presents novel, deterministic and hybrid approaches based on Combinatorial Design for key distribution. In particular, several block design techniques are considered for generating the key-chains and the key-pools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Secure communications between large number of sensor nodes that are randomly scattered over a hostile territory, necessitate efficient key distribution schemes. However, due to limited resources at sensor nodes such schemes cannot be based on post deployment computations. Instead, pairwise (symmetric) keys are required to be pre-distributed by assigning a list of keys, (a.k.a. key-chain), to each sensor node. If a pair of nodes does not have a common key after deployment then they must find a key-path with secured links. The objective is to minimize the keychain size while (i) maximizing pairwise key sharing probability and resilience, and (ii) minimizing average key-path length. This paper presents a deterministic key distribution scheme based on Expander Graphs. It shows how to map the parameters (e.g., degree, expansion, and diameter) of a Ramanujan Expander Graph to the desired properties of a key distribution scheme for a physical network topology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in technology introduce new application areas for sensor networks. Foreseeable wide deployment of mission critical sensor networks creates concerns on security issues. Security of large scale densely deployed and infrastructure less wireless networks of resource limited sensor nodes requires efficient key distribution and management mechanisms. We consider distributed and hierarchical wireless sensor networks where unicast, multicast and broadcast type of communications can take place. We evaluate deterministic, probabilistic and hybrid type of key pre-distribution and dynamic key generation algorithms for distributing pair-wise, group-wise and network-wise keys.