909 resultados para QUANTITATIVE COMPUTED-TOMOGRAPHY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Establishing age-at-death for skeletal remains is a vital component of forensic anthropology. The Suchey-Brooks (S-B) method of age estimation has been widely utilised since 1986 and relies on a visual assessment of the pubic symphyseal surface in comparison to a series of casts. Inter-population studies (Kimmerle et al., 2005; Djuric et al., 2007; Sakaue, 2006) demonstrate limitations of the S-B method, however, no assessment of this technique specific to Australian populations has been published. Aim: This investigation assessed the accuracy and applicability of the S-B method to an adult Australian Caucasian population by highlighting error rates associated with this technique. Methods: Computed tomography (CT) and contact scans of the S-B casts were performed; each geometrically modelled surface was extracted and quantified for reference purposes. A Queensland skeletal database for Caucasian remains aged 15 – 70 years was initiated at the Queensland Health Forensic and Scientific Services – Forensic Pathology Mortuary (n=350). Three-dimensional reconstruction of the bone surface using innovative volume visualisation protocols in Amira® and Rapidform® platforms was performed. Samples were allocated into 11 sub-sets of 5-year age intervals and changes associated with the surface geometry were quantified in relation to age, gender and asymmetry. Results: Preliminary results indicate that computational analysis was successfully applied to model morphological surface changes. Significant differences in observed versus actual ages were noted. Furthermore, initial morphological assessment demonstrates significant bilateral asymmetry of the pubic symphysis, which is unaccounted for in the S-B method. These results propose refinements to the S-B method, when applied to Australian casework. Conclusion: This investigation promises to transform anthropological analysis to be more quantitative and less invasive using CT imaging. The overarching goal contributes to improving skeletal identification and medico-legal death investigation in the coronial process by narrowing the range of age-at-death estimation in a biological profile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Firstly, we would like to thank Ms. Alison Brough and her colleagues for their positive commentary on our published work [1] and their appraisal of our utility of the “off-set plane” protocol for anthropometric analysis. The standardized protocols described in our manuscript have wide applications, ranging from forensic anthropology and paleodemographic research to clinical settings such as paediatric practice and orthopaedic surgical design. We affirm that the use of geometrically based reference tools commonly found in computer aided design (CAD) programs such as Geomagic Design X® are imperative for more automated and precise measurement protocols for quantitative skeletal analysis. Therefore we stand by our recommendation of the use of software such as Amira and Geomagic Design X® in the contexts described in our manuscript...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Technological development of fast multi-sectional, helical computed tomography (CT) scanners has allowed computed tomography perfusion (CTp) and angiography (CTA) in evaluating acute ischemic stroke. This study focuses on new multidetector computed tomography techniques, namely whole-brain and first-pass CT perfusion plus CTA of carotid arteries. Whole-brain CTp data is acquired during slow infusion of contrast material to achieve constant contrast concentration in the cerebral vasculature. From these data quantitative maps are constructed of perfused cerebral blood volume (pCBV). The probability curve of cerebral infarction as a function of normalized pCBV was determined in patients with acute ischemic stroke. Normalized pCBV, expressed as a percentage of contralateral normal brain pCBV, was determined in the infarction core and in regions just inside and outside the boundary between infarcted and noninfarcted brain. Corresponding probabilities of infarction were 0.99, 0.96, and 0.11, R² was 0.73, and differences in perfusion between core and inner and outer bands were highly significant. Thus a probability of infarction curve can help predict the likelihood of infarction as a function of percentage normalized pCBV. First-pass CT perfusion is based on continuous cine imaging over a selected brain area during a bolus injection of contrast. During its first passage, contrast material compartmentalizes in the intravascular space, resulting in transient tissue enhancement. Functional maps such as cerebral blood flow (CBF), and volume (CBV), and mean transit time (MTT) are then constructed. We compared the effects of three different iodine concentrations (300, 350, or 400 mg/mL) on peak enhancement of normal brain tissue and artery and vein, stratified by region-of-interest (ROI) location, in 102 patients within 3 hours of stroke onset. A monotonic increasing peak opacification was evident at all ROI locations, suggesting that CTp evaluation of patients with acute stroke is best performed with the highest available concentration of contrast agent. In another study we investigated whether lesion volumes on CBV, CBF, and MTT maps within 3 hours of stroke onset predict final infarct volume, and whether all these parameters are needed for triage to intravenous recombinant tissue plasminogen activator (IV-rtPA). The effect of IV-rtPA on the affected brain by measuring salvaged tissue volume in patients receiving IV-rtPA and in controls was investigated also. CBV lesion volume did not necessarily represent dead tissue. MTT lesion volume alone can serve to identify the upper size limit of the abnormally perfused brain, and those with IV-rtPA salvaged more brain than did controls. Carotid CTA was compared with carotid DSA in grading of stenosis in patients with stroke symptoms. In CTA, the grade of stenosis was determined by means of axial source and maximum intensity projection (MIP) images as well as a semiautomatic vessel analysis. CTA provides an adequate, less invasive alternative to conventional DSA, although tending to underestimate clinically relevant grades of stenosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the desired properties for any new biomaterial composition is its long-term stability in a suitable animal model and such property cannot be appropriately assessed by performing short-term implantation studies. While hydroxyapatite (HA) or bioglass coated metallic biomaterials are being investigated for in vivo biocompatibility properties, such study is not extensively being pursued for bulk glass ceramics. In view of their inherent brittle nature, the implant stability as well as impact of long-term release of metallic ions on bone regeneration have been a major concern. In this perspective, the present article reports the results of the in vivo implantation experiments carried out using 100% strontium (Sr)-substituted glass ceramics with the nominal composition of 4.5 SiO2-3Al(2)O(3)-1.5P(2)O(5)-3SrO-2SrF(2) for 26 weeks in cylindrical bone defects in rabbit model. The combination of histological and micro-computed tomography analysis provided a qualitative and quantitative understanding of the bone regeneration around the glass ceramic implants in comparison to the highly bioactive HA bioglass implants (control). The sequential polychrome labeling of bone during in vivo osseointegration using three fluorochromes followed by fluorescence microscopy observation confirmed homogeneous bone formation around the test implants. The results of the present study unequivocally confirm the long-term implant stability as well as osteoconductive property of 100% Sr-substituted glass ceramics, which is comparable to that of a known bioactive implant, that is, HA-based bioglass. (c) 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1168-1179, 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives The objective of this study was to develop a technique for detecting cortical bone dimensional changes in patients with bisphosphonate-related osteonecrosis of the jaw (BRONJ). Study Design Subjects with BRONJ who had cone-beam computed tomography imaging were selected, with age- and gender-matched controls. Mandibular cortical bone measurements to detect bisphosphonate-related cortical bone changes were made inferior to mental foramen, in 3 different ways: within a fixed sized rectangle, in a rectangle varying with the cortical height, and a ratio between area and height. Results Twelve BRONJ cases and 66 controls were evaluated. The cortical bone measurements were significantly higher in cases than controls for all 3 techniques. The bone measurements were strongly associated with BRONJ case status (odds ratio 3.36-7.84). The inter-rater reliability coefficients were high for all techniques (0.71-0.90). Conclusions Mandibular cortical bone measurement is a potentially useful tool in the detection of bone dimensional changes caused by bisphosphonates. Long-term administration of bisphosphonates (BPs) affects bone quality and metabolism following accumulation in bone.1 Since the first cases of bisphosphonate-related osteonecrosis of the jaw (BRONJ) were published in 2003,2 there has been a search for factors that can predict the onset of the condition. Oral and intravenous BPs reduce bone resorption, increase mineral content of bone, and alter bony architecture.3, 4, 5 and 6 Previous studies have demonstrated these changes both radiographically and following histologic analysis.1, 3, 7, 8, 9 and 10 The BP-related jaw changes may present radiological features, such as thickening of lamina dura and cortical borders, diffuse sclerosis, and narrowing of the mandibular canal3 and 11; however, oral radiographs of patients taking BPs do not consistently show radiographic changes to the jaws.11 and 12 The challenge is to find imaging tools that could improve the detection of changes in the bone associated with BP use. Various skeletal radiographic features associated with BRONJ in conventional periapical and panoramic radiographs, computed tomography, magnetic resonance imaging, and nuclear bone scanning have been described.3, 8, 9, 10 and 11 There has also been a search for BP-related quantitative methods for the evaluation of radiographic images, to avoid observer subjectivity in interpretation. Factors thought to be important include trabecular and cortical structure, and bone mineralization.4 Consequently, measurable bone data have been reported in subjects taking BPs through many techniques, including bone density, architecture, and cortical bone thickness.1, 4, 7 and 13 Trabecular microarchitecture of postmenopausal women has been evaluated with noninvasive techniques, such as high-resolution magnetic resonance images showing less deterioration of the bone 1 year after initiation of oral BP therapy.4 A decrease in bone turnover and a trend for an increase in the bone wall thickness has been detected by histomorphometry in subjects taking BPs.1 Alterations in the cortical structure of the second metacarpal have been detected in digital x-ray radiogrammetry of postmenopausal women treated with BPs.7 Mandibular cortical width may be measured on dental panoramic radiographs, and it has been suggested as a screening tool for referring patients for bone densitometry for osteoporosis investigation.14 and 15 Inhibition of the intracortical bone remodeling in the mandible of mice taking BPs has been reported.16 Thus, imaging evaluation of the mandibular cortical bone could be a biologically plausible way to detect BP bone alterations. Computed tomography can assess both cortical and trabecular bone characteristics. Cone-beam computed tomography (CBCT) can provide 3-dimensional information, while using lower doses and costing less than conventional CT. The CBCT images have been studied as a tool for the measurement of trabecular bone in patients with BRONJ.13 Therefore, cortical bone measurements on CBCT of the jaws might also help to understand bone changes in patients with BRONJ. There is no standard in quantifying dimensional changes of mandibular cortical bone. We explored several different approaches to take into consideration possible changes in length, area, and volume. These led to the 3 techniques developed in this study. This article reports a matched case-control study in which mandibular cortical bone was measured on CBCT images of subjects with BRONJ and controls. The aim of the study was to explore the usefulness of 3 techniques for detecting mandibular cortical bone dimensional changes caused by BP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By measuring the total crack lengths (TCL) along a gunshot wound channel simulated in ordnance gelatine, one can calculate the energy transferred by a projectile to the surrounding tissue along its course. Visual quantitative TCL analysis of cut slices in ordnance gelatine blocks is unreliable due to the poor visibility of cracks and the likely introduction of secondary cracks resulting from slicing. Furthermore, gelatine TCL patterns are difficult to preserve because of the deterioration of the internal structures of gelatine with age and the tendency of gelatine to decompose. By contrast, using computed tomography (CT) software for TCL analysis in gelatine, cracks on 1-cm thick slices can be easily detected, measured and preserved. In this, experiment CT TCL analyses were applied to gunshots fired into gelatine blocks by three different ammunition types (9-mm Luger full metal jacket, .44 Remington Magnum semi-jacketed hollow point and 7.62 × 51 RWS Cone-Point). The resulting TCL curves reflected the three projectiles' capacity to transfer energy to the surrounding tissue very accurately and showed clearly the typical energy transfer differences. We believe that CT is a useful tool in evaluating gunshot wound profiles using the TCL method and is indeed superior to conventional methods applying physical slicing of the gelatine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We aimed at assessing stent geometry and in-stent contrast attenuation with 64-slice CT in patients with various coronary stents. Twenty-nine patients (mean age 60 +/- 11 years; 24 men) with 50 stents underwent CT within 2 weeks after stent placement. Mean in-stent luminal diameter and reference vessel diameter proximal and distal to the stent were assessed with CT, and compared to quantitative coronary angiography (QCA). Stent length was also compared to the manufacturer's values. Images were reconstructed using a medium-smooth (B30f) and sharp (B46f) kernel. All 50 stents could be visualized with CT. Mean in-stent luminal diameter was systematically underestimated with CT compared to QCA (1.60 +/- 0.39 mm versus 2.49 +/- 0.45 mm; P < 0.0001), resulting in a modest correlation of QCA versus CT (r = 0.49; P < 0.0001). Stent length as given by the manufacturer was 18.2 +/- 6.2 mm, correlating well with CT (18.5 +/- 5.7 mm; r = 0.95; P < 0.0001) and QCA (17.4 +/- 5.6 mm; r = 0.87; P < 0.0001). Proximal and distal reference vessel diameters were similar with CT and QCA (P = 0.06 and P = 0.03). B46f kernel images showed higher image noise (P < 0.05) and lower in-stent CT attenuation values (P < 0.001) than images reconstructed with the B30f kernel. 64-slice CT allows measurement of coronary artery in-stent density, and significantly underestimates the true in-stent diameter compared to QCA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: This retrospective study was conducted to determine whether a low-volume contrast medium protocol provides sufficient enhancement for 64-detector computed tomography angiography (CTA) in patients with aortoiliac aneurysms. METHODS: Evaluated were 45 consecutive patients (6 women; mean age, 72 +/- 6 years) who were referred for aortoiliac computed tomography angiography between October 2005 and January 2007. Group A (22 patients; creatinine clearance, 64.2 +/- 8.1 mL/min) received 50 mL of the contrast agent. Group B (23 patients; creatinine clearance, 89.4 +/- 7.3 mL/min) received 100 mL of the contrast agent. The injection rate was 3.5 mL/s, followed by 30 mL of saline at 3.5 mL/s. Studies were performed on the same 64-detector computed tomography scanner using a real-time bolus-tracking technique. Quantitative analysis was performed by determination of mean vascular attenuation at 10 regions of interest from the suprarenal aorta to the common femoral artery by one reader blinded to type and amount of contrast agent and compared using the Student t test. Image quality according to a 4-point scale was assessed in consensus by two readers blinded to type and amount of contrast medium and compared using the Mann-Whitney test. Multivariable adjustments were performed using ordinal regression analysis. RESULTS: Mean total attenuation did not differ significantly between both groups (196.5 +/- 33.0 Hounsfield unit [HU] in group A and 203.1 +/- 44.2 HU in group B; P = .57 by univariate and P > .05 by multivariable analysis). Accordingly, attenuation at each region of interest was not significantly different (P > .35). Image quality was excellent or good in all patients. No significant differences in visual assessment were found comparing both contrast medium protocols (P > .05 by univariate and by multivariable analysis). CONCLUSIONS: Aortoiliac aneurysm imaging can be performed with substantially reduced amounts of contrast medium using 64-detector computed tomography angiography technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Measures to reduce radiation exposure and injected iodine mass are becoming more important with the widespread and often repetitive use of pulmonary CT angiography (CTA) in patients with suspected pulmonary embolism. In this retrospective study, we analyzed the capability of 2 low-kilovoltage CTA-protocols to achieve these goals. MATERIALS AND METHODS: Ninety patients weighing less than 100 kg were examined by a pulmonary CTA protocol using either 100 kVp (group A) or 80 kVp (group B). Volume and flow rate of contrast medium were reduced in group B (75 mL at 3 mL/s) compared with group A (100 mL at 4 mL/s). Attenuation was measured in the central and peripheral pulmonary arteries, and the contrast-to-noise ratios (CNR) were calculated. Entrance skin dose was estimated by measuring the surface dose in an ovoid-cylindrical polymethyl methacrylate chest phantom with 2 various dimensions corresponding to the range of chest diameters in our patients. Quantitative image parameters, estimated effective dose, and skin dose in both groups were compared by the t test. Arterial enhancement, noise, and overall quality were independently assessed by 3 radiologists, and results were compared between the groups using nonparametric tests. RESULTS: Mean attenuation in the pulmonary arteries in group B (427.6 +/- 116 HU) was significantly higher than in group A (342.1 +/- 87.7 HU; P < 0.001), whereas CNR showed no difference (group A, 20.6 +/- 7.3 and group B, 22.2 +/- 7.1; P = 0.302). Effective dose was lower by more than 40% with 80 kVp (1.68 +/- 0.23 mSv) compared with 100 kVp (2.87 +/- 0.88 mSv) (P < 0.001). Surface dose was significantly lower at 80 kVp compared with 100 kVp at both phantom dimensions (2.75 vs. 3.22 mGy; P = 0.027 and 2.22 vs. 2.73 mGy; P = 0.005, respectively). Image quality did not differ significantly between the groups (P = 0.151). CONCLUSIONS: Using 80 kVp in pulmonary CTA permits reduced patient exposure by 40% and CM volume by 25% compared with 100 kVp without deterioration of image quality in patients weighing less than 100 kg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To determine the image quality of an iterative reconstruction (IR) technique in low-dose MDCT (LDCT) of the chest of immunocompromised patients in an intraindividual comparison to filtered back projection (FBP) and to evaluate the dose reduction capability. MATERIALS AND METHODS 30 chest LDCT scans were performed in immunocompromised patients (Brilliance iCT; 20-40 mAs; mean CTDIvol: 1.7 mGy). The raw data were reconstructed using FBP and the IR technique (iDose4™, Philips, Best, The Netherlands) set to seven iteration levels. 30 routine-dose MDCT (RDCT) reconstructed with FBP served as controls (mean exposure: 116 mAs; mean CDTIvol: 7.6 mGy). Three blinded radiologists scored subjective image quality and lesion conspicuity. Quantitative parameters including CT attenuation and objective image noise (OIN) were determined. RESULTS In LDCT high iDose4™ levels lead to a significant decrease in OIN (FBP vs. iDose7: subscapular muscle 139.4 vs. 40.6 HU). The high iDose4™ levels provided significant improvements in image quality and artifact and noise reduction compared to LDCT FBP images. The conspicuity of subtle lesions was limited in LDCT FBP images. It significantly improved with high iDose4™ levels (> iDose4). LDCT with iDose4™ level 6 was determined to be of equivalent image quality as RDCT with FBP. CONCLUSION iDose4™ substantially improves image quality and lesion conspicuity and reduces noise in low-dose chest CT. Compared to RDCT, high iDose4™ levels provide equivalent image quality in LDCT, hence suggesting a potential dose reduction of almost 80%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The International Society for Clinical Densitometry (ISCD) has developed new official positions for the clinical use of computed tomography (CT) scans acquired without a calibration phantom, for example, CT scans obtained for other diagnosis such as colonography. This also addresses techniques suggested for opportunistic screening of osteoporosis. The ISCD task force for quantitative CT reviewed the evidence for clinical applications of these new techniques and presented a report with recommendations at the 2015 ISCD Position Development Conference. Here we discuss the agreed upon ISCD official positions with supporting medical evidence, rationale, controversy, and suggestions for further study. Advanced techniques summarized as statistical parameter mapping methods were also reviewed. Their future use is promising but the clinical application is premature. The clinical use of QCT of the hip is addressed in part I and of finite element analysis of the hip and spine in part II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE The aim of this study was to directly compare metal artifact reduction (MAR) of virtual monoenergetic extrapolations (VMEs) from dual-energy computed tomography (CT) with iterative MAR (iMAR) from single energy in pelvic CT with hip prostheses. MATERIALS AND METHODS A human pelvis phantom with unilateral or bilateral metal inserts of different material (steel and titanium) was scanned with third-generation dual-source CT using single (120 kVp) and dual-energy (100/150 kVp) at similar radiation dose (CT dose index, 7.15 mGy). Three image series for each phantom configuration were reconstructed: uncorrected, VME, and iMAR. Two independent, blinded radiologists assessed image quality quantitatively (noise and attenuation) and subjectively (5-point Likert scale). Intraclass correlation coefficients (ICCs) and Cohen κ were calculated to evaluate interreader agreements. Repeated measures analysis of variance and Friedman test were used to compare quantitative and qualitative image quality. Post hoc testing was performed using a corrected (Bonferroni) P < 0.017. RESULTS Agreements between readers were high for noise (all, ICC ≥ 0.975) and attenuation (all, ICC ≥ 0.986); agreements for qualitative assessment were good to perfect (all, κ ≥ 0.678). Compared with uncorrected images, VME showed significant noise reduction in the phantom with titanium only (P < 0.017), and iMAR showed significantly lower noise in all regions and phantom configurations (all, P < 0.017). In all phantom configurations, deviations of attenuation were smallest in images reconstructed with iMAR. For VME, there was a tendency toward higher subjective image quality in phantoms with titanium compared with uncorrected images, however, without reaching statistical significance (P > 0.017). Subjective image quality was rated significantly higher for images reconstructed with iMAR than for uncorrected images in all phantom configurations (all, P < 0.017). CONCLUSIONS Iterative MAR showed better MAR capabilities than VME in settings with bilateral hip prosthesis or unilateral steel prosthesis. In settings with unilateral hip prosthesis made of titanium, VME and iMAR performed similarly well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of ion microbeams as probes for computedtomography has proven to be a powerful tool for the three-dimensional characterization of specimens a few tens of micrometers in size. Compared to other types of probes, the main advantage is that quantitative information about mass density and composition can be obtained directly, using specific reconstruction codes. At the Centre d’Etudes Nucléaires de Bordeaux Gradignan (CENBG), this technique was initially developed for applications in cellular biology. However, the observation of the cell ultrastructure requires a sub-micron resolution. The construction of the nanobeamline at the Applications Interdisciplinaires des Faisceaux d’Ions en Region Aquitaine (AIFIRA) irradiation facility has opened new perspectives for such applications. The implementation of computedtomography on the nanobeamline of CENBG has required a careful design of the analysis chamber, especially microscopes for precise sample visualization, and detectors for scanning transmission ion microscopy (STIM) and for particle induced X-ray emission (PIXE). The sample can be precisely positioned in the three directions X, Y, Z and a stepper motor coupled to a goniometer ensures the rotational motion. First images of 3D tomography were obtained on a reference sample containing microspheres of certified diameter, showing the good stability of the beam and the sample stage, and the precision of the motion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deformation and damage mechanisms of carbon fiber-reinforced epoxy laminates deformed in shear were studied by means of X-ray computed tomography. In particular, the evolution of matrix cracking, interply delamination and fiber rotation was ascertained as a function of the applied strain. In order to provide quantitative information, an algorithm was developed to automatically determine the crack density and the fiber orientation from the tomograms. The investigation provided new insights about the complex interaction between the different damage mechanisms (i.e. matrix cracking and interply delamination) as a function of the applied strain, ply thickness and ply location within the laminate as well as quantitative data about the evolution of matrix cracking and fiber rotation during deformation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El estudio de la estructura del suelo es de vital importancia en diferentes campos de la ciencia y la tecnología. La estructura del suelo controla procesos físicos y biológicos importantes en los sistemas suelo-planta-microorganismos. Estos procesos están dominados por la geometría de la estructura del suelo, y una caracterización cuantitativa de la heterogeneidad de la geometría del espacio poroso es beneficiosa para la predicción de propiedades físicas del suelo. La tecnología de la tomografía computerizada de rayos-X (CT) nos permite obtener imágenes digitales tridimensionales del interior de una muestra de suelo, proporcionando información de la geometría de los poros del suelo y permitiendo el estudio de los poros sin destruir las muestras. Las técnicas de la geometría fractal y de la morfología matemática se han propuesto como una poderosa herramienta para analizar y cuantificar características geométricas. Las dimensiones fractales del espacio poroso, de la interfaz poro-sólido y de la distribución de tamaños de poros son indicadores de la complejidad de la estructura del suelo. Los funcionales de Minkowski y las funciones morfológicas proporcionan medios para medir características geométricas fundamentales de los objetos geométricos tridimensionales. Esto es, volumen, superficie, curvatura media de la superficie y conectividad. Las características del suelo como la distribución de tamaños de poros, el volumen del espacio poroso o la superficie poro-solido pueden ser alteradas por diferentes practicas de manejo de suelo. En este trabajo analizamos imágenes tomográficas de muestras de suelo de dos zonas cercanas con practicas de manejo diferentes. Obtenemos un conjunto de medidas geométricas, para evaluar y cuantificar posibles diferencias que el laboreo pueda haber causado en el suelo. ABSTRACT The study of soil structure is of vital importance in different fields of science and technology. Soil structure controls important physical and biological processes in soil-plant-microbial systems. Those processes are dominated by the geometry of soil pore structure, and a quantitative characterization of the spatial heterogeneity of the pore space geometry is beneficial for prediction of soil physical properties. The technology of X-ray computed tomography (CT) allows us to obtain three-dimensional digital images of the inside of a soil sample providing information on soil pore geometry and enabling the study of the pores without disturbing the samples. Fractal geometry and mathematical morphological techniques have been proposed as powerful tools to analyze and quantify geometrical features. Fractal dimensions of pore space, pore-solid interface and pore size distribution are indicators of soil structure complexity. Minkowski functionals and morphological functions provide means to measure fundamental geometrical features of three-dimensional geometrical objects, that is, volume, boundary surface, mean boundary surface curvature, and connectivity. Soil features such as pore-size distribution, pore space volume or pore-solid surface can be altered by different soil management practices. In this work we analyze CT images of soil samples from two nearby areas with contrasting management practices. We performed a set of geometrical measures, some of them from mathematical morphology, to assess and quantify any possible difference that tillage may have caused on the soil.