963 resultados para QUALITY TRAITS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of markers distributed all long the genome may increase the accuracy of the predicted additive genetic value of young animals that are candidates to be selected as reproducers. In commercial herds, due to the cost of genotyping, only some animals are genotyped and procedures, divided in two or three steps, are done in order to include these genomic data in genetic evaluation. However, genomic evaluation may be calculated using one unified step that combines phenotypic data, pedigree and genomics. The aim of the study was to compare a multiple-trait model using only pedigree information with another using pedigree and genomic data. In this study, 9,318 lactations from 3061 buffaloes were used, 384 buffaloes were genotyped using a Illumina bovine chip (Illumina Infinium (R) bovineHD BeadChip). Seven traits were analyzed milk yield (MY), fat yield (FY), protein yield (PY), lactose yield (LY), fat percentage (F%), protein percentage (P%) and somatic cell score (SCSt). Two analyses were done: one using phenotypic and pedigree information (matrix A) and in the other using a matrix based in pedigree and genomic information (one step, matrix H). The (co) variance components were estimated using multiple-trait analysis by Bayesian inference method, applying an animal model, through Gibbs sampling. The model included the fixed effects of contemporary groups (herd-year-calving season), number of milking (2 levels), and age of buffalo at calving as (co) variable (quadratic and linear effect). The additive genetic, permanent environmental, and residual effects were included as random effects in the model. The heritability estimates using matrix A were 0.25, 0.22, 0.26, 0.17, 0.37, 0.42 and 0.26 and using matrix H were 0.25, 0.24, 0.26, 0.18, 0.38, 0.46 and 0.26 for MY, FY, PY, LY, % F, % P and SCCt, respectively. The estimates of the additive genetic effect for the traits were similar in both analyses, but the accuracy were bigger using matrix H (superior to 15% for traits studied). The heritability estimates were moderated indicating genetic gain under selection. The use of genomic information in the analyses increases the accuracy. It permits a better estimation of the additive genetic value of the animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pig meat quality is determined by several parameters, such as lipid content, tenderness, water-holding capacity, pH, color and flavor, that affect consumers’ acceptance and technological properties of meat. Carcass quality parameters are important for the production of fresh and dry-cure high-quality products, in particular the fat deposition and the lean cut yield. The identification of genes and markers associated with meat and carcass quality traits is of prime interest, for the possibility of improving the traits by marker-assisted selection (MAS) schemes. Therefore, the aim of this thesis was to investigate seven candidate genes for meat and carcass quality traits in pigs. In particular, we focused on genes belonging to the family of the lipid droplet coat proteins perilipins (PLIN1 and PLIN2) and to the calpain/calpastatin system (CAST, CAPN1, CAPN3, CAPNS1) and on the gene encoding for PPARg-coactivator 1A (PPARGC1A). In general, the candidate genes investigation included the protein localization, the detection of polymorphisms, the association analysis with meat and carcass traits and the analysis of the expression level, in order to assess the involvement of the gene in pork quality. Some of the analyzed genes showed effects on various pork traits that are subject to selection in genetic improvement programs, suggesting a possible involvement of the genes in controlling the traits variability. In particular, significant association results have been obtained for PLIN2, CAST and PPARGC1A genes, that are worthwhile of further validation. The obtained results contribute to a better understanding of biological mechanisms important for pig production as well as for a possible use of pig as animal model for studies regarding obesity in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experiment was designed to investigate the impact of selection for increased body mass on external and internal egg quality traits of Japanese quail. Three hundred and sixty Japanese quail, divergently selected over three generations for different body mass at 4 weeks of age, were used. Quail were homogeneously divided into three groups each consisting of 120 birds: high body mass (HBM), low body mass (LBM) and Control. ANOVA was used to detect the effect of selection on egg quality. In addition, correlation between external and internal egg quality traits was measured. Our results revealed thatHBMquail laid heavier eggs (P = 0.03 compared with LBM but not significantly different with Control quail) with a higher external (shell thickness, shell weight, eggshell ratio and eggshell density, P = 0.0001) and internal egg quality score (albumen weight, P = 0.003; albumen ratio, P = 0.01; albumen height, yolk height, yolk index and Haugh unit, P = 0.0001) when compared with both the Control and LBM. The egg surface area and yolk diameter were significantly higher in HBM when compared with the LBM but not with the Control line. Egg weight was positively correlated with albumen weight (r = 0.54, P = 0.0001), albumen ratio (r = 0.14, P = 0.05), yolk height (r = 0.27, P = 0.0001), yolk weight (r = 0.23, P = 0.002), yolk diameter (r = 0.14, P = 0.05) and yolk index (r = 0.21, P = 0.005) but was negatively correlated with yolk ratio (r = –0.16, P = 0.03). Our results indicate that selection for higher body mass might result in heavier eggs and superior egg quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments to evaluate the effect of in-season calcium (Ca) sprays on late-season peach (Prunus persica L. Batsch cv. Calrico) were carried out for a 2-year period. Calcium formulations (0.5% and 1.0% in 2008 and only 0.5% tested in 2009) supplied either as CaCl2 or Ca propionate in combination with two or three adjuvants (0.05% of the nonionic surfactants Tween 20 and Break Thru, and 0.5% carboxymethylcellulose, CMC) were sprayed four to five times over the growing season. Peach mesocarp and endocarp Ca concentrations were determined on a 15-day basis from the beginning of May until the end of June. Further tissue analyses were performed at harvest. A decreasing trend in fruit Ca concentrations over the growing season was always observed regardless of the Ca treatments. Both in 2008 and 2009, significant tissue Ca increments associated with the application of Ca-containing sprays in combination with adjuvants were only observed in June, which may be coincident with the period of pit hardening. In 2008, both at harvest and after cold storage, the total soluble-solids concentration (° Brix) of fruits supplied with Ca propionate (0.5% and 1.0% Ca) was always lower as compared to the rest of treatments. The application of multiple Ca-containing sprays increased firmness at harvest and after cold storage, especially when CaCl2 was the active ingredient used. Supplying the adjuvants Tween 20 and CMC increased fruit acidity both at harvest and after cold storage. Evaluation of the development of physiological disorders after cold storage (2 weeks at 0°C) indicated a lower susceptibility of Ca-treated fruits to internal browning. Fruits treated with multiple CaCl2-, CMC-, and Break Thru®-containing sprays during the growing season were significantly less prone to the development of chilling injuries as compared to untreated peaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced wheat lines carrying the Hessian fly resistance gene H27 were obtained by backcrossing the wheat/Aegilops ventricosa introgression line, H-93-33, to commercial wheat cultivars as recurrent parents. The Acph-N v 1 marker linked to the gene H27 on the 4Nv chromosome of this line was used for marker assisted selection. Advanced lines were evaluated for Hessian fly resistance in field and growth chamber tests, and for other agronomic traits during several crop seasons at different localities of Spain. The hessian fly resistance levels of lines carrying the 4Nv chromosome introgression (4D/4Nv substitution and recombination lines that previously were classified by in situ hybridisation) were high, but always lower than that of their Ae. ventricosa progenitor. Introgression lines had higher grain yields in infested field trials than those without the 4Nv chromosome and their susceptible parents, but lower grain yields under high yield potential conditions. The 4Nv introgression was also associated with later heading, and lower tiller and grain numbers/m2 . In addition, it was associated with longer and more lax spikes, and higher values of grain weight and grain protein content. However, the glutenin and gliadin expression, as well as the bread-making performance, were similar to those of their recurrent parents

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two experiments were conducted to determine the influence of duration of storage of soybean meal (SBM) on variables that define the quality of the protein fraction. Urease activity, protein dispersibility index (PDI), KOH protein solubility (KOHsol), and trypsin inhibitor activity were determined. In experiment 1, 8 samples of SBM, ranging in CP content from 55.4 to 56.5% DM, were collected from a US crushing plant at weekly intervals and analyzed at arrival to the laboratory and after 30, 60, 90, and 120 d of storage. In experiment 2, 7 samples of SBM, ranging in CP content from 49.0 to 55.0% DM, were collected from different Argentinean crushers and analyzed at arrival and after 24, 48, 80, and 136 wk of storage. In both experiments, samples were stored in hermetic glass containers in a laboratory room at 12 ± 2°C and a relative humidity of 70 ± 3%. Duration of storage did not affect urease activity or trypsin inhibitor activity values in either of the 2 experiments. However, PDI values decreased linearly with time of storage in both experiments (P menor que 0.001). Also, KOHsol decreased linearly (P menor que 0.05) with duration of storage in experiment 2 (long-term storage) but not in experiment 1(shorter term storage). Therefore, PDI values might not be adequate to compare protein quality of commercial SBM samples that have been stored for different periods of time. The KOHsol values are less affected by length of storage of the meals under current commercial practices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary objective of this work is to relate the biomass fuel quality to fast pyrolysis-oil quality in order to identify key biomass traits which affect pyrolysis-oil stability. During storage the pyrolysis-oil becomes more viscous due to chemical and physical changes, as reactions and volatile losses occur due to aging. The reason for oil instability begins within the pyrolysis reactor during pyrolysis in which the biomass is rapidly heated in the absence of oxygen, producing free radical volatiles which are then quickly condensed to form the oil. The products formed do not reach thermodynamic equilibrium and in tum the products react with each other to try to achieve product stability. The first aim of this research was to develop and validate a rapid screening method for determining biomass lignin content in comparison to traditional, time consuming and hence costly wet chemical methods such as Klason. Lolium and Festuca grasses were selected to validate the screening method, as these grass genotypes exhibit a low range of Klason /Acid Digestible Fibre lignin contents. The screening methodology was based on the relationship between the lignin derived products from pyrolysis and the lignin content as determined by wet chemistry. The second aim of the research was to determine whether metals have an affect on fast pyrolysis products, and if any clear relationships can be deduced to aid research in feedstock selection for fast pyrolysis processing. It was found that alkali metals, particularly Na and K influence the rate and yield of degradation as well the char content. Pre-washing biomass with water can remove 70% of the total metals, and improve the pyrolysis product characteristics by increasing the organic yield, the temperature in which maximum liquid yield occurs and the proportion of higher molecular weight compounds within the pyrolysis-oil. The third aim identified these feedstock traits and relates them to the pyrolysis-oil quality and stability. It was found that the mineral matter was a key determinant on pyrolysis-oil yield compared to the proportion of lignin. However the higher molecular weight compounds present in the pyrolysis-oil are due to the lignin, and can cause instability within the pyrolysis-oil. The final aim was to investigate if energy crops can be enhanced by agronomical practices to produce a biomass quality which is attractive to the biomass conversion community, as well as giving a good yield to the farmers. It was found that the nitrogen/potassium chloride fertiliser treatments enhances Miscanthus qualities, by producing low ash, high volatiles yields with acceptable yields for farmers. The progress of senescence was measured in terms of biomass characteristics and fast pyrolysis product characteristics. The results obtained from this research are in strong agreement with published literature, and provides new information on quality traits for biomass which affects pyrolysis and pyrolysis-oils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy policies around the world are mandating for a progressive increase in renewable energy production. Extensive grassland areas with low productivity and land use limitations have become target areas for sustainable energy production to avoid competition with food production on the limited available arable land resources and minimize further conversion of grassland into intensively managed energy cropping systems or abandonment. However, the high spatio-temporal variability in botanical composition and biochemical parameters is detrimental to reliable assessment of biomass yield and quality regarding anaerobic digestion. In an approach to assess the performance for predicting biomass using a multi-sensor combination including NIRS, ultra-sonic distance measurements and LAI-2000, biweekly sensor measurements were taken on a pure stand of reed canary grass (Phalaris aruninacea), a legume grass mixture and a diversity mixture with thirty-six species in an experimental extensive two cut management system. Different combinations of the sensor response values were used in multiple regression analysis to improve biomass predictions compared to exclusive sensors. Wavelength bands for sensor specific NDVI-type vegetation indices were selected from the hyperspectral data and evaluated for the biomass prediction as exclusive indices and in combination with LAI and ultra-sonic distance measurements. Ultrasonic sward height was the best to predict biomass in single sensor approaches (R² 0.73 – 0.76). The addition of LAI-2000 improved the prediction performance by up to 30% while NIRS barely improved the prediction performance. In an approach to evaluate broad based prediction of biochemical parameters relevant for anaerobic digestion using hyperspectral NIRS, spectroscopic measurements were taken on biomass from the Jena-Experiment plots in 2008 and 2009. Measurements were conducted on different conditions of the biomass including standing sward, hay and silage and different spectroscopic devices to simulate different preparation and measurement conditions along the process chain for biogas production. Best prediction results were acquired for all constituents at laboratory measurement conditions with dried and ground samples on a bench-top NIRS system (RPD > 3) with a coefficient of determination R2 < 0.9. The same biomass was further used in batch fermentation to analyse the impact of species richness and functional group composition on methane yields using whole crop digestion and pressfluid derived by the Integrated generation of solid Fuel and Biogas from Biomass (IFBB) procedure. Although species richness and functional group composition were largely insignificant, the presence of grasses and legumes in the mixtures were most determining factors influencing methane yields in whole crop digestion. High lignocellulose content and a high C/N ratio in grasses may have reduced the digestibility in the first cut material, excess nitrogen may have inhibited methane production in second cut legumes, while batch experiments proved superior specific methane yields of IFBB press fluids and showed that detrimental effects of the parent material were reduced by the technical treatment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ten growth or wood-quality traits were assessed in three nearby Corymbia citriodora subsp. variegata (CCV) open-pollinated family-within-provenance trials (18 provenances represented by a total of 374 families) to provide information for the development of a breeding program targeting both pulp and solid-wood products. Growth traits (diameter at breast high over bark [DBH], height and conical volume) were assessed at 3 and 7 years of age. Wood-quality traits (density [DEN], Kraft pulp yield [KPY], modulus of elasticity [MoE] and microfibril angle [MfA]) were predicted using near-infrared spectroscopy on wood samples collected from these trials when aged between 10 and 12 years. The high average KPY, DEN and MoE, and low average MfA observed indicates CCV is very suitable for both pulp and timber products. All traits were under moderate to strong genetic control. In across- trials analyses, high (>0.4) heritability estimates were observed for height, DEN, MoE and MfA, while moderate heritability estimates (0.24 to 0.34) were observed for DBH, volume and KPY. Most traits showed very low levels of genotype × site interaction. Estimated age–age genetic correlations for growth traits were strong at both the family (0.97) and provenance (0.99) levels. Relationships among traits (additive genetic correlation estimates) were favourable, with strong and positive estimates between growth traits (0.84 to 0.98), moderate and positive values between growth and wood-quality traits (0.32 to 0.68), moderate and positive between KPY and MoE (0.64), and high and positive between DEN and MoE (0.82). However, negative (but favourable) correlations were detected between MfA and all other evaluated traits (−0.31 to −0.96). The genetic correlation between the same trait expressed on two different sites, at family level, ranged from 0.24 to 0.42 for growth traits, and from 0.29 to 0.53 for wood traits. Therefore simultaneous genetic improvement of growth and wood property traits in CCV for the target environment in south-east Queensland should be possible, given the moderate to high estimates of heritability and favourable correlations amongst all traits studied, unless genotype × site interactions are greater than was evident. © 2016 NISC (Pty) Ltd

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nelore is the major beef cattle breed in Brazil with more than 130 million heads. Genome-wide association studies (GWAS) are often used to associate markers and genomic regions to growth and meat quality traits that can be used to assist selection programs. An alternative methodology to traditional GWAS that involves the construction of gene network interactions, derived from results of several GWAS is the AWM (Association Weight Matrices)/PCIT (Partial Correlation and Information Theory). With the aim of evaluating the genetic architecture of Brazilian Nelore cattle, we used high-density SNP genotyping data (~770,000 SNP) from 780 Nelore animals comprising 34 half-sibling families derived from highly disseminated and unrelated sires from across Brazil. The AWM/PCIT methodology was employed to evaluate the genes that participate in a series of eight phenotypes related to growth and meat quality obtained from this Nelore sample.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cathepsin enzymes represent an important family of lysosomal proteinases with a broad spectrum of functions in many, if not in all, tissues and cell types. In addition to their primary role during the normal protein turnover, they possess highly specific proteolytic activities, including antigen processing in the immune response and a direct role in the development of obesity and tumours. In pigs, the involvement of cathepsin enzymes in proteolytic processes have important effects during the conversion of muscle to meat, due to their influence on meat texture and sensory characteristics, mainly in seasoned products. Their contribution is fundamental in flavour development of dry-curing hams. However, several authors have demonstrated that high cathepsin activity, in particular of cathepsin B, is correlated to defects of these products, such as an excessive meat softness together with abnormal free tyrosine content, astringent or metallic aftertastes and formation of a white film on the cut surface. Thus, investigation of their genetic variability could be useful to identify DNA markers associated with these dry cured hams parameters, but also with meat quality, production and carcass traits in Italian heavy pigs. Unfortunately, no association has been found between cathepsin markers and meat quality traits so far, in particular with cathepsin B activity, suggesting that other genes, besides these, affect meat quality parameters. Nevertheless, significant associations were observed with several carcass and production traits in pigs. A recent study has demonstrated that different single nucleotide polymorphisms (SNPs) localized in cathepsin D (CTSD), F (CTSF), H and Z genes were highly associated with growth, fat deposition and production traits in an Italian Large White pig population. The aim of this thesis was to confirm some of these results in other pig populations and identify new cathepsin markers in order to evaluate their effects on cathepsin activity and other production traits. Furthermore, starting from the data obtained in previous studies on CTSD gene, we also analyzed the known polymorphism located in the insulin-like growth factor 2 gene (IGF2 intron3-g.3072G>A). This marker is considered the causative mutation for the quantitative trait loci (QTL) affecting muscle mass and fat deposition in pigs. Since IGF2 maps very close to CTSD on porcine chromosome (SSC) 2, we wanted to clarify if the effects of the CTSD marker were due to linkage disequilibrium with the IGF2 intron3-g.3072G>A mutation or not. In the first chapter, we reported the results from these two SSC2 gene markers. First of all, we evaluated the effects of the IGF2 intron3-g.3072G>A polymorphism in the Italian Large White breed, for which no previous studies have analysed this marker. Highly significant associations were identified with all estimated breeding values for production and carcass traits (P<0.00001), while no effects were observed for meat quality traits. Instead, the IGF2 intron3-g.3072G>A mutation did not show any associations with the analyzed traits in the Italian Duroc pigs, probably due to the low level of variability at this polymorphic site for this breed. In the same Duroc pig population, significant associations were obtained for the CTSD marker for all production and carcass traits (P < 0.001), after excluding possible confounding effects of the IGF2 mutation. The effects of the CTSD g.70G>A polymorphism were also confirmed in a group of Italian Large White pigs homozygous for the IGF2 intron3-g.3072G allele G (IGF2 intron3-g.3072GG) and by haplotype analysis between the markers of the two considered genes. Taken together, all these data indicated that the IGF2 intron3-g.3072G>A mutation is not the only polymorphism affecting fatness and muscle deposition in pigs. In the second chapter, we reported the analysis of two new SNPs identified in cathepsin L (CTSL) and cathepsin S (CTSS) genes and the association results with meat quality parameters (including cathepsin B activity) and several production traits in an Italian Large White pig population. Allele frequencies of these two markers were evaluated in 7 different pig breeds. Furthermore, we mapped using a radiation hybrid panel the CTSS gene on SSC4. Association studies with several production traits, carried out in 268 Italian Large White pigs, indicated positive effects of the CTSL polymorphism on average daily gain, weight of lean cuts and backfat thickness (P<0.05). The results for these latter traits were also confirmed using a selective genotype approach in other Italian Large White pigs (P<0.01). In the 268 pig group, the CTSS polymorphism was associated with feed:gain ratio and average daily gain (P<0.05). Instead, no association was observed between the analysed markers and meat quality parameters. Finally, we wanted to verify if the positive results obtained for the cathepsin L and S markers and for other previous identified SNPs (cathepsin F, cathepsin Z and their inhibitor cystatin B) were confirmed in the Italian Duroc pig breed (third chapter). We analysed them in two groups of Duroc pigs: the first group was made of 218 performance-tested pigs not selected by any phenotypic criteria, the second group was made of 100 Italian Duroc pigs extreme and divergent for visible intermuscular fat trait. In the first group, the CTSL polymorphism was associated with weight of lean cuts (P<0.05), while suggestive associations were obtained for average daily gain and backfat thickness (P<0.10). Allele frequencies of the CTSL gene marker also differed positively among the visible intermuscular extreme tails. Instead, no positive effects were observed for the other DNA markers on the analysed traits. In conclusion, in agreement with the present data and for the biological role of these enzymes, the porcine CTSD and CTSL markers: a) may have a direct effect in the biological mechanisms involved in determining fat and lean meat content in pigs, or b) these markers could be very close to the putative functional mutation(s) present in other genes. These findings have important practical applications, in particular the CTSD and CTSL mutations could be applied in a marker assisted selection (MAS) both in the Italian Large White and Italian Duroc breeds. Marker assisted selection could also increase in efficiency by adding information from the cathepsin S genotype, but only in the Italian Large White breed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to the growing attention of consumers towards their food, improvement of quality of animal products has become one of the main focus of research. To this aim, the application of modern molecular genetics approaches has been proved extremely useful and effective. This innovative drive includes all livestock species productions, including pork. The Italian pig breeding industry is unique because needs heavy pigs slaughtered at about 160 kg for the production of high quality processed products. For this reason, it requires precise meat quality and carcass characteristics. Two aspects have been considered in this thesis: the application of the transcriptome analysis in post mortem pig muscles as a possible method to evaluate meat quality parameters related to the pre mortem status of the animals, including health, nutrition, welfare, and with potential applications for product traceability (chapters 3 and 4); the study of candidate genes for obesity related traits in order to identify markers associated with fatness in pigs that could be applied to improve carcass quality (chapters 5, 6, and 7). Chapter three addresses the first issue from a methodological point of view. When we considered this issue, it was not obvious that post mortem skeletal muscle could be useful for transcriptomic analysis. Therefore we demonstrated that the quality of RNA extracted from skeletal muscle of pigs sampled at different post mortem intervals (20 minutes, 2 hours, 6 hours, and 24 hours) is good for downstream applications. Degradation occurred starting from 48 h post mortem even if at this time it is still possible to use some RNA products. In the fourth chapter, in order to demonstrate the potential use of RNA obtained up to 24 hours post mortem, we present the results of RNA analysis with the Affymetrix microarray platform that made it possible to assess the level of expression of more of 24000 mRNAs. We did not identify any significant differences between the different post mortem times suggesting that this technique could be applied to retrieve information coming from the transcriptome of skeletal muscle samples not collected just after slaughtering. This study represents the first contribution of this kind applied to pork. In the fifth chapter, we investigated as candidate for fat deposition the TBC1D1 [TBC1 (tre-2/USP6, BUB2, cdc16) gene. This gene is involved in mechanisms regulating energy homeostasis in skeletal muscle and is associated with predisposition to obesity in humans. By resequencing a fragment of the TBC1D1 gene we identified three synonymous mutations localized in exon 2 (g.40A>G, g.151C>T, and g.172T>C) and 2 polymorphisms localized in intron 2 (g.219G>A and g.252G>A). One of these polymorphisms (g.219G>A) was genotyped by high resolution melting (HRM) analysis and PCR-RFLP. Moreover, this gene sequence was mapped by radiation hybrid analysis on porcine chromosome 8. The association study was conducted in 756 performance tested pigs of Italian Large White and Italian Duroc breeds. Significant results were obtained for lean meat content, back fat thickness, visible intermuscular fat and ham weight. In chapter six, a second candidate gene (tribbles homolog 3, TRIB3) is analyzed in a study of association with carcass and meat quality traits. The TRIB3 gene is involved in energy metabolism of skeletal muscle and plays a role as suppressor of adipocyte differentiation. We identified two polymorphisms in the first coding exon of the porcine TRIB3 gene, one is a synonymous SNP (c.132T> C), a second is a missense mutation (c.146C> T, p.P49L). The two polymorphisms appear to be in complete linkage disequilibrium between and within breeds. The in silico analysis of the p.P49L substitution suggests that it might have a functional effect. The association study in about 650 pigs indicates that this marker is associated with back fat thickness in Italian Large White and Italian Duroc breeds in two different experimental designs. This polymorphisms is also associated with lactate content of muscle semimembranosus in Italian Large White pigs. Expression analysis indicated that this gene is transcribed in skeletal muscle and adipose tissue as well as in other tissues. In the seventh chapter, we reported the genotyping results for of 677 SNPs in extreme divergent groups of pigs chosen according to the extreme estimated breeding values for back fat thickness. SNPs were identified by resequencing, literature mining and in silico database mining. analysis, data reported in the literature of 60 candidates genes for obesity. Genotyping was carried out using the GoldenGate (Illumina) platform. Of the analyzed SNPs more that 300 were polymorphic in the genotyped population and had minor allele frequency (MAF) >0.05. Of these SNPs, 65 were associated (P<0.10) with back fat thickness. One of the most significant gene marker was the same TBC1D1 SNPs reported in chapter 5, confirming the role of this gene in fat deposition in pig. These results could be important to better define the pig as a model for human obesity other than for marker assisted selection to improve carcass characteristics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Barley hull plays an important role in malt and feed quality and processing. In this study we measured the variation in hull con-tent along with other grain quality traits namely, kernel discolouration and degree of pre-harvest sprouting, in a single map-ping population. There were significant (p < 0.05) genetic as well as environment effects. In addition, heritability was calculated for hull content to be 29% and 47% for two years’ data. From the analysis, major QTL markers were identified in con-trolling the expression of hull content on chromosomes 2 (2H), and 6 (6H) with significant (P < 0.05) LOD scores of 5.4 and 3.46 respectively. Minor QTLs were identified on 1 (7H), 4 (4H), 5 (1H) and 7 (5H). The region at marker Bmac310 on 4(4H) could be associated with dormancy gene SD4. A number of the QTLs also coincided with regions for either kernel discolouration or preharvest sprouting resistance (dormancy). The results indicate that variation exists for hull content, which is influenced by both growing environment as well as genetically, although the genetic variance explained less than half of the total variance. Further, hull content also impacts on other grain quality attributes including dormancy, sprouting resistance and kernel appearance.