985 resultados para Pulse Oximeter
Resumo:
Introducción. En Colombia, el 80% de los pacientes con enfermedad renal crónica en hemodiálisis tienen fístula arteriovenosa periférica (FAV) que asegura el flujo de sangre durante la hemodiálisis (1), la variabilidad en el flujo de sangre en el brazo de la FAV hacia la parte distal, puede afectar la lectura de la oximetría de pulso (SpO2) (2), llevando a la toma de decisiones equivocadas por el personal de salud. El objetivo de este estudio es aclarar si existe diferencia entre la SpO2 del brazo de la FAV y el brazo contralateral. Materiales y métodos. Se realizó un estudio de correlación entre los valores de SpO2 del brazo con FAV contra el brazo sin FAV, de 40 pacientes que asistieron a hemodiálisis. La recolección de los datos se llevó a cabo, con un formato que incluyó el resultado de la pulsioximetria y variables asociadas, antes, durante y después de la hemodiálisis. Se comparó la mediana de los deltas de las diferencias con pruebas estadísticas T Student – Mann Whitney, aceptando un valor significativo de p < 0,05. Resultados. No se encontraron diferencias estadísticamente significativas de la SpO2 entre el brazo con FAV y el brazo sin FAV, antes, durante y después de la diálisis, sin embargo si se apreció una correlación positiva estadísticamente significativa. Conclusiones. Se encontró correlación positiva estadísticamente significativa, donde no hubo diferencias en el resultado la pulsioximetría entre el brazo con FAV y brazo sin FAV, por lo tanto es válido tomar la pulsioximetría en cualquiera de los brazos.
Resumo:
A hipoxemia pode ocorrer durante a Colangiopancreatografia Endoscópica Retrógrada (CPER) porque alguma analgesia e sedação precisam ser realizadas. O posicionamento do paciente em pronação dificulta a ventilação adequada. Um estudo transversal controlado foi utilizado para investigar possíveis fatores preditivos de dessaturação de oxigênio em pacientes submetidos à CPER sedados com midazolam associado à meperidina. No total, 186 pacientes foram monitorados continuamente com oxímetro de pulso. A regressão de Cox adaptada por Braslow foi utilizada para identificar fatores preditivos de dessaturação relacionados ao paciente e ao exame. As variáveis estudadas foram: idade, gênero, hematócrito e hemoglobina, uso de escopolamina, exame diagnóstico ou terapêutico, midazolam ( média 0,07mg/Kg) e meperidina (média 0,7mg/Kg), escores da Sociedade Americana de Anestesiologistas (ASA) e tempo de exame. Dos 186 pacientes, 113 não dessaturaram (60,8%), 22(11,8%) apresentaram dessaturação moderada (SpO2≤92%) e 51 (27,4%) apresentaram dessaturação grave (SpO2≤90%). As variáveis preditivas de dessaturação de oxigênio detectadas foram idade ≥60 anos (p=0,004; RR:1,5;IC:1,12-1,93) e escore ASA III (p=0,013) As variáveis idade (60 anos ou mais) e escore ASA III foram identificadas como de risco para dessaturação em pacientes que realizam CPER sob sedação consciente. Estes pacientes necessitam de maior monitoração para saturação e hipoventilação pela enfermagem, alertando para a depressão respiratória. A utilização do oxímetro de pulso e solicitação de respiração profunda durante o exame auxilia a diminuir estes riscos.
Resumo:
Hypoxia is one of many factors involved in the regulation of the IGF system. However, no information is available regarding the regulation of the IGF system by acute hypoxia in humans. Objective: The aim of this study was to evaluate the effect of acute hypoxia on the IGF system of children. Design: Twenty-seven previously health children (14 boys and 13 girls) aged 15 days to 9.5 years were studied in two different situations: during a hypoxemic state (HS) due to acute respiratory distress and after full recovery to a normoxemic state (NS). In these two situations oxygen saturation was assessed with a pulse-oximeter and blood samples were collected for serum IGF-I, IGF-II, IGFBP-1, IGFBP-3, ALS and insulin determination by ELISA; fluoroimmunometric assay determination for GH and also for IGF1R gene expression analysis in peripheral lymphocytes by quantitative real-time PCR. Data were paired and analyzed by the Wilcoxon non-parametric test. Results: Oxygen saturation was significantly lower during HS than in NS (P<0.0001). IGF-I and IGF-II levels were lower during HS than in NS (P<0.0001 and P=0.0004. respectively). IGFBP-3 levels were also lower in HS than in NS (P=0.0002) while ALS and basal GH levels were higher during HS (P=0.0015 and P=0.014, respectively). Moreover, IGFBP-1 levels were higher during HS than in NS (P=0.004). No difference was found regarding insulin levels. The expression of IGF1R mRNA as 2(-Delta Delta CT) was higher during HS than in NS (P=0.03). Conclusion: The above results confirm a role of hypoxia in the regulation of the IGF system also in humans. This effect could be direct on the liver and/or mediated by GH and it is not restricted to the hepatocytes but involves other cell lines. During acute hypoxia a combination of alterations usually associated with reduced IGF action was observed. The higher expression of IGF1R mRNA may reflect an up-regulation of the transcriptional process. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To document the existence of a relationship between apnea of prematurity (AOP) and gastroesophageal reflux (GER) in preterm infants. Setting: One Neonatal Intensive Care Unit Patients: Twenty-six preterm infants (gestational age<32 weeks) with recurrent apneas. Intervention: Simultaneous and synchronized recording of polysomnography and pH-impedance monitoring (pH-MII). Polysomnography detects and characterizes apneas, by recording of breathing movement, nasal airflow, electrocardiogram, pulse oximeter saturation. pH-MII is the state-of-theart methodology for GER detection in preterm newborns. Main outcome measures: Relationship between AOP and GER, which were considered temporally related if both started within 30 seconds of each other. Results: One-hundred-fifty-four apneas out of 1136 were temporally related to GER. The frequency of apnea during the one-minute time around the onset of GER was significantly higher than the one detected in the GER-free period (p=0.03). Furthermore, the frequency of apnea in the 30 seconds after GER (GER-triggered apneas) was greater than that detected in the 30 seconds before (p=0.01). A great inter-individual variability was documented in the proportion of GERtriggered apneas. A strong correlation between total number of apneas and the difference between apneas detected 30 seconds after and before GER was found (p=0.034). Conclusions: Our data show that a variable rate of apneas can be triggered by GER in very preterm infant. Further studies are needed to recognise clinical features which identify those patients who are more susceptible to GER-triggered apneas.
Resumo:
This study compared the effectiveness of topical benzocaine 20% versus a combination of lidocaine, tetracaine, and phenylephrine in providing sufficient analgesia for the placement of orthodontic temporary anchorage devices (TADs). The 2 topical anesthetics were tested against each other bilaterally using a randomized, double-blind, crossover design. The agents were left in place for the amount of time prescribed by the manufacturer. The TAD was then placed, and each subject rated the degree of pain on a Heft-Parker visual analogue scale. A pulse oximeter was used to record the preoperative and postoperative pulse rates. Statistically significant differences in perceived pain (P < .05) and success rate (P < .01) between drugs were seen, but no significant difference in pulse rate change between the topical anesthetics was observed (P > .05). It was concluded that when the efficacy of topical benzocaine and of a combination product was compared as the sole anesthetic to facilitate acceptable pain control for placement of orthodontic temporary anchorage devices, the combination product was considerably more efficacious.
Resumo:
This work has, as its objective, the development of non-invasive and low-cost systems for monitoring and automatic diagnosing specific neonatal diseases by means of the analysis of suitable video signals. We focus on monitoring infants potentially at risk of diseases characterized by the presence or absence of rhythmic movements of one or more body parts. Seizures and respiratory diseases are specifically considered, but the approach is general. Seizures are defined as sudden neurological and behavioural alterations. They are age-dependent phenomena and the most common sign of central nervous system dysfunction. Neonatal seizures have onset within the 28th day of life in newborns at term and within the 44th week of conceptional age in preterm infants. Their main causes are hypoxic-ischaemic encephalopathy, intracranial haemorrhage, and sepsis. Studies indicate an incidence rate of neonatal seizures of 0.2% live births, 1.1% for preterm neonates, and 1.3% for infants weighing less than 2500 g at birth. Neonatal seizures can be classified into four main categories: clonic, tonic, myoclonic, and subtle. Seizures in newborns have to be promptly and accurately recognized in order to establish timely treatments that could avoid an increase of the underlying brain damage. Respiratory diseases related to the occurrence of apnoea episodes may be caused by cerebrovascular events. Among the wide range of causes of apnoea, besides seizures, a relevant one is Congenital Central Hypoventilation Syndrome (CCHS) \cite{Healy}. With a reported prevalence of 1 in 200,000 live births, CCHS, formerly known as Ondine's curse, is a rare life-threatening disorder characterized by a failure of the automatic control of breathing, caused by mutations in a gene classified as PHOX2B. CCHS manifests itself, in the neonatal period, with episodes of cyanosis or apnoea, especially during quiet sleep. The reported mortality rates range from 8% to 38% of newborn with genetically confirmed CCHS. Nowadays, CCHS is considered a disorder of autonomic regulation, with related risk of sudden infant death syndrome (SIDS). Currently, the standard method of diagnosis, for both diseases, is based on polysomnography, a set of sensors such as ElectroEncephaloGram (EEG) sensors, ElectroMyoGraphy (EMG) sensors, ElectroCardioGraphy (ECG) sensors, elastic belt sensors, pulse-oximeter and nasal flow-meters. This monitoring system is very expensive, time-consuming, moderately invasive and requires particularly skilled medical personnel, not always available in a Neonatal Intensive Care Unit (NICU). Therefore, automatic, real-time and non-invasive monitoring equipments able to reliably recognize these diseases would be of significant value in the NICU. A very appealing monitoring tool to automatically detect neonatal seizures or breathing disorders may be based on acquiring, through a network of sensors, e.g., a set of video cameras, the movements of the newborn's body (e.g., limbs, chest) and properly processing the relevant signals. An automatic multi-sensor system could be used to permanently monitor every patient in the NICU or specific patients at home. Furthermore, a wire-free technique may be more user-friendly and highly desirable when used with infants, in particular with newborns. This work has focused on a reliable method to estimate the periodicity in pathological movements based on the use of the Maximum Likelihood (ML) criterion. In particular, average differential luminance signals from multiple Red, Green and Blue (RGB) cameras or depth-sensor devices are extracted and the presence or absence of a significant periodicity is analysed in order to detect possible pathological conditions. The efficacy of this monitoring system has been measured on the basis of video recordings provided by the Department of Neurosciences of the University of Parma. Concerning clonic seizures, a kinematic analysis was performed to establish a relationship between neonatal seizures and human inborn pattern of quadrupedal locomotion. Moreover, we have decided to realize simulators able to replicate the symptomatic movements characteristic of the diseases under consideration. The reasons is, essentially, the opportunity to have, at any time, a 'subject' on which to test the continuously evolving detection algorithms. Finally, we have developed a smartphone App, called 'Smartphone based contactless epilepsy detector' (SmartCED), able to detect neonatal clonic seizures and warn the user about the occurrence in real-time.
Resumo:
Objectives. To study the relationship between nocturnal periodic breathing episodes and behavioral awakenings at high altitude. Methods. Observational study. It is 6-day ascent of 4 healthy subjects from Besisahar (760 meters) to Manang (3540 meters) in Nepal in March 2012. A recording pulse oximeter was worn by each subject to measure their oxygen saturation and the presence of periodic breathing continuously through the night. An actigraph was simultaneously worn in order to determine nocturnal behavioral awakenings. There were no interventions. Results. 187-hour sleep at high altitude was analyzed, and of this, 145 hours (78%) had at least one PB event. At high altitude, 10.5% (95% CI 6.5-14.6%) of total sleep time was spent in PB while 15 out of 50 awakenings (30%, 95% CI: 18-45%) occurring at high altitudes were associated with PB (P < 0.001). Conclusions. Our data reveals a higher than expected number of behavioral awakenings associated with PB compared to what would be expected by chance. This suggests that PB likely plays a role in behavioral awakenings at high altitude.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade Gama, Programa de Pós-Graduação em Engenharia Biomédica, 2015.
Resumo:
We report on a method to study the dynamics of triplet formation based on the fluorescence signal produced by a pulse train. Basically, the pulse train acts as sequential pump-probe pulses that precisely map the excited-state dynamics in the long time scale. This allows characterizing those processes that affect the population evolution of the first excited singlet state, whose decay gives rise to the fluorescence. The technique was proven to be valuable to measure parameters of triplet formation in organic molecules. Additionally, this single beam technique has the advantages of simplicity, low noise and background-free signal detection. (C) 2011 Optical Society of America
Resumo:
Objective: The purpose of this study was to assess the efficacy of Er:YAG laser energy for composite resin removal and the influence of pulse repetition rate on the thermal alterations occurring during laser ablation. Materials and Methods: Composite resin filling was placed in cavities (1.0 mm deep) prepared in bovine teeth and the specimens were randomly assigned to five groups according to the technique used for composite filling removal. In group I (controls), the restorations were removed using a high-speed diamond bur. In the other groups, the composite fillings were removed using an Er: YAG laser with different pulse repetition rates: group 2-2 Hz; group 3-4 Hz; group 4-6 Hz; and group 5-10 Hz. The time required for complete removal of the restorative material and the temperature changes were recorded. Results: Temperature rise during composite resin removal with the Er: YAG laser occurred in the substrate underneath the restoration and was directly proportional to the increase in pulse repetition rate. None of the groups had a temperature increase during composite filling removal of more than 5.6 degrees C, which is considered the critical point above which irreversible thermal damage to the pulp may result. Regarding the time for composite filling removal, all the laser-ablated groups (except for group 5 [10 Hz]) required more time than the control group for complete elimination of the material from the cavity walls. Conclusion: Under the tested conditions, Er: YAG laser irradiation was efficient for composite resin ablation and did not cause a temperature increase above the limit considered safe for the pulp. Among the tested pulse repetition rates, 6 Hz produced minimal temperature change compared to the control group (high-speed bur), and allowed composite filling removal within a time period that is acceptable for clinical conditions.
Resumo:
Objective: To evaluate the potential of 980-nm gallium aluminum arsenide (GaAlAs) and 1064-nm neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers to reduce bacteria after irradiation of implant surfaces contaminated with Enterococcus faecalis and Porphyromonas gingivalis and on irradiated implant surface morphology. Background: Despite the frequency of implant success, some implant loss is related to peri-implantitis because of difficulty in eliminating the biofilm. Methods: Implants (3.75 x 13 mm) with machined surfaces, surfaces sand blasted with titanium oxide (TiO(2)), and sand-blasted and acid-etched surfaces were exposed to P. gingivalis and E. faecalis cultures and irradiated with 980-nm GaAlAs or 1064-nm Nd: YAG lasers. After laser treatments, the number of remaining colony-forming units and implant surface morphology were analyzed using scanning electron microscopy (SEM). Results: The Nd: YAG laser was able to promote a total contamination reduction on all implants irradiated. The results with the GaAlAs laser showed 100% bacteria reduction on the implants irradiated with 3 W. Irradiation with 2.5 W and 3 W achieved 100% of bacteria reduction on P. gingivalis-contaminated implants. Decontamination was not complete for the sand-blasted TiO(2) (78.6%) and acid-etched surfaces (49.4%) contaminated with E. faecalis and irradiated with 2.5 W. SEM showed no implant surface changes. Conclusion: The wavelengths used in this research provided bacteria reduction without damaging implant surfaces. New clinical research should be encouraged for the use of this technology in the treatment of peri-implantitis.
Resumo:
We describe the design and implementation of a high voltage pulse power supply (pulser) that supports the operation of a repetitively pulsed filtered vacuum arc plasma deposition facility in plasma immersion ion implantation and deposition (Mepiiid) mode. Negative pulses (micropulses) of up to 20 kV in magnitude and 20 A peak current are provided in gated pulse packets (macropulses) over a broad range of possible pulse width and duty cycle. Application of the system consisting of filtered vacuum arc and high voltage pulser is demonstrated by forming diamond-like carbon (DLC) thin films with and without substrate bias provided by the pulser. Significantly enhanced film/substrate adhesion is observed when the pulser is used to induce interface mixing between the DLC film and the underlying Si substrate. (C) 2010 American Institute of Physics. [doi:10.1063/1.3518969]
Resumo:
We propose a method for measuring hyper-Rayleigh scattering employing pulse trains produced by a Q-switched and mode-locked Nd:YAG laser. The use of the entire pulse train under the Q-switch envelope avoids the need of any device to scan the irradiance, as is usually done with nanosecond and femtosecond single-pulse lasers. To verify the feasibility of the technique, we performed measurements in different solutions of para-nitroaniline and compared the results with those obtained with nanosecond pulses. In both cases, the agreement with the hyperpolarizability values reported in the literature is about the same, but the measurements carried out with pulse trains are at least 20 times faster. Besides the advantage of acquisition speed, the use of pulse trains also allows the instantaneous inspection of slow luminescence contributions arising from multiphoton absorption. (C) 2008 Optical Society of America.
Resumo:
Multipulse rectifier topologies based on autoconnections are increasingly applied as interface stages between mains and power electronics converters. These topologies are attractive and cost-effective solutions for meeting the requirements of low total harmonic distortion of line current and high power factor. Furthermore, as only a small fraction of the total power required by the load is processed in the magnetic core, the overall resulting volume and weight are reduced. This paper proposes a mathematical analysis based on phasor diagrams that results in a single and general expression capable of unifying all delta and wye step-up or step-down autotransformer connections for 12-and 18-pulse ac-dc converters. The expression obtained allows the choice of a wide range of input/output voltage ratio for step-up or step-down autotransformer, and this general expression is also presented in a graphical form for each converter. Moreover, it simplifies the procedure for determining turn ratios and polarities for all windings of the autotransformer. A routine for easy and fast calculations is developed and validated by a design example. Finally, experimental results are presented along with comments on a 6-kW 220-V line voltage, 400-V rectified voltage, and 18-pulse delta-autoconnected prototype.
Resumo:
The time varying intensity character of a load applied to a structure poses many difficulties in analysis. A remedy to this situation is to substitute a complex pulse shape by a rectangular equivalent one. It has been shown by others that this procedure works well for perfectly plastic elementary structures. This paper applies the concept of equivalent pulse to more complex structures. Special attention is given to the material behavior, which is allowed to be strain rate and strain hardening sensitive. Thanks to the explicit finite element solution, it is shown in this article that blast loads applied to complex structures made of real materials can be substituted by equivalent rectangular loads with both responses being practically the same. (c) 2007 Elsevier Ltd. All rights reserved.