889 resultados para Public buildings -- Energy consumption
Resumo:
There are several ways to attempt to model a building and its heat gains from external sources as well as internal ones in order to evaluate a proper operation, audit retrofit actions, and forecast energy consumption. Different techniques, varying from simple regression to models that are based on physical principles, can be used for simulation. A frequent hypothesis for all these models is that the input variables should be based on realistic data when they are available, otherwise the evaluation of energy consumption might be highly under or over estimated. In this paper, a comparison is made between a simple model based on artificial neural network (ANN) and a model that is based on physical principles (EnergyPlus) as an auditing and predicting tool in order to forecast building energy consumption. The Administration Building of the University of Sao Paulo is used as a case study. The building energy consumption profiles are collected as well as the campus meteorological data. Results show that both models are suitable for energy consumption forecast. Additionally, a parametric analysis is carried out for the considered building on EnergyPlus in order to evaluate the influence of several parameters such as the building profile occupation and weather data on such forecasting. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The building sector is one of the Europeâ s main energy consumer, making buildings an important target for a wiser energy use, improving indoor comfort conditions and reducing the energy consumption. To achieve the European Union targets for energy consumption and carbon reductions it is crucial to act in new, but also in existing buildings, which constitute the majority of the building stock. In existing buildings, the significant improvement of their efficiency requires important investments. Therefore, costs are a major concern in the decision making process and the analysis of the cost effectiveness of the interventions is an important path in the guidance for the selection of the different renovation scenarios. The Portuguese thermal legislation considers the simple payback method for the calculations of the time for the return of the investment. However, this method does not take into consideration inflation, cash flows and cost of capital, as well as the future costs of energy and the building elements lifetime as it happens in a life cycle cost analysis. In order to understand the impact of the economic analysis method used in the choice of the renovation measures, a case study has been analysed using simple payback calculations and life cycle costs analysis. Overall results show that less far-reaching renovation measures are indicated when using the simple payback calculations which may be leading to solutions less cost-effective in a long run perspective.
Resumo:
The UK Government's Department for Energy and Climate Change has been investigating the feasibility of developing a national energy efficiency data framework covering both domestic and non-domestic buildings. Working closely with the Energy Saving Trust and energy suppliers, the aim is to develop a data framework to monitor changes in energy efficiency, develop and evaluate programmes and improve information available to consumers. Key applications of the framework are to understand trends in built stock energy use, identify drivers and evaluate the success of different policies. For energy suppliers, it could identify what energy uses are growing, in which sectors and why. This would help with market segmentation and the design of products. For building professionals, it could supplement energy audits and modelling of end-use consumption with real data and support the generation of accurate and comprehensive benchmarks. This paper critically examines the results of the first phase of work to construct a national energy efficiency data-framework for the domestic sector focusing on two specific issues: (a) drivers of domestic energy consumption in terms of the physical nature of the dwellings and socio-economic characteristics of occupants and (b) the impact of energy efficiency measures on energy consumption.
Resumo:
This paper provides some results on the potential to minimize environmental impacts in residential buildings life cycle, through façade design strategies, analyzing also their impact on costs from a lifecycle perspective. On one hand, it assesses the environmental damage produced by the materials of the building envelope, and on the other, the benefits they offer in terms of habitability and liveability in the use phase. The analysis includes several design parameters used both for rehabilitation of existing facades, as for new facades, trying to cover various determinants and proposing project alternatives. With this study we intended to contribute to address the energy challenges for the coming years, trying also to propose pathways for innovative solutions for the building envelope.
Resumo:
Reducing energy consumption is one of the main challenges in most countries. For example, European Member States agreed to reduce greenhouse gas (GHG) emissions by 20% in 2020 compared to 1990 levels (EC 2008). Considering each sector separately, ICTs account nowadays for 2% of total carbon emissions. This percentage will increase as the demand of communication services and applications steps up. At the same time, the expected evolution of ICT-based developments - smart buildings, smart grids and smart transportation systems among others - could result in the creation of energy-saving opportunities leading to global emission reductions (Labouze et al. 2008), although the amount of these savings is under debate (Falch 2010). The main development required in telecommunication networks ?one of the three major blocks of energy consumption in ICTs together with data centers and consumer equipment (Sutherland 2009) ? is the evolution of existing infrastructures into ultra-broadband networks, the so-called Next Generation Networks (NGN). Fourth generation (4G) mobile communications are the technology of choice to complete -or supplement- the ubiquitous deployment of NGN. The risk and opportunities involved in NGN roll-out are currently in the forefront of the economic and policy debate. However, the issue of which is the role of energy consumption in 4G networks seems absent, despite the fact that the economic impact of energy consumption arises as a key element in the cost analysis of this type of networks. Precisely, the aim of this research is to provide deeper insight on the energy consumption involved in the usage of a 4G network, its relationship with network main design features, and the general economic impact this would have in the capital and operational expenditures related with network deployment and usage.
Resumo:
Prepared in cooperation with the Edison Electric Institute and marketing staff of various utilities throughout the country.
Resumo:
"Contract no. 14-01-001-1885."
Resumo:
Includes bibliography.
Resumo:
Latest issue consulted: FY01 and projected FY02-04.
Resumo:
It is important to understand and forecast a typical or a particularly household daily consumption in order to design and size suitable renewable energy systems and energy storage. In this research for Short Term Load Forecasting (STLF) it has been used Artificial Neural Networks (ANN) and, despite the consumption unpredictability, it has been shown the possibility to forecast the electricity consumption of a household with certainty. The ANNs are recognized to be a potential methodology for modeling hourly and daily energy consumption and load forecasting. Input variables such as apartment area, numbers of occupants, electrical appliance consumption and Boolean inputs as hourly meter system were considered. Furthermore, the investigation carried out aims to define an ANN architecture and a training algorithm in order to achieve a robust model to be used in forecasting energy consumption in a typical household. It was observed that a feed-forward ANN and the Levenberg-Marquardt algorithm provided a good performance. For this research it was used a database with consumption records, logged in 93 real households, in Lisbon, Portugal, between February 2000 and July 2001, including both weekdays and weekend. The results show that the ANN approach provides a reliable model for forecasting household electric energy consumption and load profile. © 2014 The Author.
Resumo:
This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimise heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed based on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.
Resumo:
The global warming due to high CO2 emission in the last years has made energy saving a global problem nowadays. However, manufacturing processes such as pultrusion necessarily needs heat for curing the resin. Then, the only option available is to apply all efforts to make the process even more efficient. Different heating systems have been used on pultrusion, however, the most widely used are the planar resistances. The main objective of this study is to develop another heating system and compares it with the former one. Thermography was used in spite of define the temperature profile along the die. FEA (finite element analysis) allows to understand how many energy is spend with the initial heating system. After this first approach, changes were done on the die in order to test the new heating system and to check possible quality problems on the product. Thus, this work allows to conclude that with the new heating system a significant reduction in the setup time is now possible and an energy reduction of about 57% was achieved.
Resumo:
The recent changes on power systems paradigm requires the active participation of small and medium players in energy management. With an electricity price fluctuation these players must manage the consumption. Lowering costs and ensuring adequate user comfort levels. Demand response can improve the power system management and bring benefits for the small and medium players. The work presented in this paper, which is developed aiming the smart grid context, can also be used in the current power system paradigm. The proposed system is the combination of several fields of research, namely multi-agent systems and artificial neural networks. This system is physically implemented in our laboratories and it is used daily by researchers. The physical implementation gives the system an improvement in the proof of concept, distancing itself from the conventional systems. This paper presents a case study illustrating the simulation of real-time pricing in a laboratory.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
Nowadays, reducing energy consumption is one of the highest priorities and biggest challenges faced worldwide and in particular in the industrial sector. Given the increasing trend of consumption and the current economical crisis, identifying cost reductions on the most energy-intensive sectors has become one of the main concerns among companies and researchers. Particularly in industrial environments, energy consumption is affected by several factors, namely production factors(e.g. equipments), human (e.g. operators experience), environmental (e.g. temperature), among others, which influence the way of how energy is used across the plant. Therefore, several approaches for identifying consumption causes have been suggested and discussed. However, the existing methods only provide guidelines for energy consumption and have shown difficulties in explaining certain energy consumption patterns due to the lack of structure to incorporate context influence, hence are not able to track down the causes of consumption to a process level, where optimization measures can actually take place. This dissertation proposes a new approach to tackle this issue, by on-line estimation of context-based energy consumption models, which are able to map operating context to consumption patterns. Context identification is performed by regression tree algorithms. Energy consumption estimation is achieved by means of a multi-model architecture using multiple RLS algorithms, locally estimated for each operating context. Lastly, the proposed approach is applied to a real cement plant grinding circuit. Experimental results prove the viability of the overall system, regarding both automatic context identification and energy consumption estimation.