23 resultados para Pseudomorphs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Izu-Bonin forearc basement volcanic rocks recovered from Holes 792E and 793B show the same phenocrystic assemblage (i.e., plagioclase, two pyroxenes, and Fe-Ti oxides ±olivine), but they differ in the crystallization sequence and their phenocryst chemistry. All the igneous rocks have suffered low-grade hydrothermal alteration caused by interaction with seawater. As a result, only clinopyroxenes, plagioclases, and oxides have preserved their primary igneous compositions. The Neogene olivine-clinopyroxene diabasic intrusion (Unit II) recovered from Hole 793B differs from the basement basaltic andesites because it lacks Cr-spinels and contains abundant titanomagnetites (Usp38.5-46.4) and uncommon FeO-rich (FeO = 29%) spinels. It displays petrological and geochemical similarities to the Izu Arc volcanoes and, thus, can be considered as related to Izu-Bonin Arc magmatic activity. The titanomagnetites (Usp28.5-33) in the calc-alkaline andesitic fragments of the Oligocene volcaniclastic breccia in Hole 793B (Unit VI) represent an early crystallization phase. The Plagioclase phenocrysts enclosed in these rocks show oscillatory zoning and are less Ca-rich (An78.6-67.8) than the plagioclase phenocrysts of the diabase sill and the basement basaltic andesites. Their clinopyroxenes are Fe-rich augites (Fs ? 19.4; FeO = 12%) and thus, differ significantly from the clinopyroxenes of the Hole 793B arc-tholeiitic igneous rocks. The 30-32 Ma porphyritic, two-pyroxene andesites recovered from Hole 792E are very similar to the andesitic clasts of the Neogene breccia recovered in Hole 793B (Unit VI). Both rocks have the same crystallization sequence, and similar chemistry of the Fe-Ti oxides, clinopyroxenes, and plagioclases: that is, Ti-rich (Usp25.5-30.4) magnetites, Fe-rich augites, and intensely oscillatory zoned plagioclases with bytownitic cores (An86-63) and labradorite rims (An73-68). They display a calc-alkaline differentiation trend (Taylor et al., this volume). So, the basement highly porphyritic andesites recovered at Hole 792E, and the Hole 793B andesitic clasts of Unit VI show the same petrological and geochemical characteristics, which are that of calc-alkaline suites. These Oligocene volcanic rocks represent likely the remnants of the Izu-Bonin normal arc magmatic activity, before the forearc rifting and extension. The crystallization sequence in the basaltic andesites recovered from Hole 793B is olivine-orthopyroxene-clinopyroxene-plagioclase-Fe-Ti oxides, indicating a tholeiitic differentiation trend for these volcanic rocks. Type i is an olivine-and Cr-spinel bearing basaltic andesite whereas Type ii is a porphyritic pyroxene-rich basaltic andesite. The porphyritic plagioclase-rich basaltic andesite (Type iii) is similar, in most respects, to Type ii lavas but contains plagioclase phenocrysts. The last, and least common lava is an aphyric to sparsely phyric andesite (Type iv). Cr-spinels, included either in the olivine pseudomorphs of Type i lavas or in the groundmass of Type ii lavas, are Cr-rich and Mg-rich. In contrast, Cr-spinels included in clinopyroxenes and orthopyroxenes (Types i and ii lavas) show lower Cr* and Mg* ratios and higher aluminium contents. Orthopyroxenes from all rock types are Mg-rich enstatites. Clinopyroxenes display endiopsidic to augitic compositions and are TiO2 and Al2O3 depleted. All the crystals exhibit strong zoning patterns, usually normal, although, reverse zoning patterns are not uncommon. The plagioclases show compositions within the range of An90-64. The Fe-Ti oxides of the groundmass are TiO2-poor (Usp16-17). The Hole 793B basaltic andesites show, like the Site 458 bronzites from the Mariana forearc, intermediate features between arc tholeiites and boninites: (1) Cr-spinel in olivine, (2) presence of Mg-rich bronzite, Ca-Mg-rich clinopyroxenes, and Ca-plagioclase phenocrysts, and (3) transitional trace element depletion and epsioln-Nd ratios between arc tholeiites and boninites. Thus, the forearc magmatism of the Izu-Bonin and Mariana arcs, linked to rifting and extension, is represented by a depleted tholeiitic suite that displays boninitic affinities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed mineralogical investigations of high-Fe layer silicates from loose sediments (glauconite sands) of the Sado Ridge revealed that green aggregates found on submarine rises of the Japan Sea floor have different genesis. It was demonstrated that round dark green grains approximate micas in composition. Primary volcanic rocks presumably have undergone extensive secondary alterations and then were disintegrated. Their disintegration products (protoceladonite) filling pores were redeposited and buried in sediments for a long time. Angular green grains mainly represented by smectite also formed at lower temperatures during disintegration of altered volcanosedimentary rocks. These younger grains had no prolonged exposure. Pseudomorphs of siliceous microplankton consist of both hydromica and smectites. They are presumably authigenic products formed with participation of microorganisms or electrostatic processes (spherical shape), or their combination. The formation mechanism of minerals filling cavities in pyroclastics is not entirely clear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In sediments of the Laptev Sea unknown earlier ferromanganese manifestations have been found. On the basis of structural-textural external signs they have been divided to five groups: 1) tube- and spindle-shaped pseudomorphs after and within invertebrates; 2) nuclear and non-nuclear nodules; 3) flagellum- and tube-like skeletons of polychaetes; 4) flat and flattened crustate nodules and crusts; 5) micronodules. All types of ferromanganese manifestations have been sorted in three main genetic series: eigenferrous formations of autochthonous (polychaetes, goethite micronodules) and allochthonous (nuclear nodules) nature; ferromanganese nodules formed under mild hydro-geodynamic conditions at the sediment-seawater geochemical barrier; and ferromanganese manifestations formed under conditions of the variable physico-chemical environment. Ferromanganese manifestations of allochthonous type have signs of littoral zones. They contain both ferrous and ferric iron and have low oxidation degree of manganese in comparison with the autochthonous type manifestations. Manganese minerals with moderate oxidation degree are represented by vernadite and buserite. Such features of iron and manganese indicate different conditions of their formation and occurrence. The main distinctive feature of ferromanganese mineralisation in the Laptev Sea is the redox barrier: the oxidized water layer enriched in oxygen and reduced sediments. This barrier provides favorable conditions for bacterial formation of ferromanganese ores. Understanding of the genesis of ferromanganese manifestations should be found in a study of organic matter reworking by bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Authigenic carbonates were recovered in lower to middle Eocene claystones at Ocean Drilling Program Site 647 in the Labrador Sea. Detailed chemical, petrographic, and X-ray investigations reveal that these diagenetic carbonates have a complex mineralogical composition. At least five different carbonate phases are identified: calcium-rich rhodochrosite, rhodochrosite, manganosiderite, siderite, and calcite. Manganese carbonates are the dominant carbonate phases formed throughout the section. Textural analyses show two major generations of carbonate formation. Early cementation of micritic carbonate in burrow structures was followed by carbonate cementation forming microsparry to sparry crystals. At approximately 620 meters below seafloor (mbsf), three concretions of iron carbonates occur, which indicates a special pore-water chemistry. Thin section analyses from this level show (1) several generations of diagenetic carbonates, (2) widespread secondary cavity formation in burrow structures, and (3) various cement precipitations in voids. We suggest that this level represents a hiatus or highly condensed sequence, as indicated by (1) the low carbonate content in host sediments, (2) carbonate dissolution reflected by the high ratio of benthic to planktonic foraminifers, and (3) complex diagenetic alteration in the carbonate concretions. Iron and manganese enrichments observed in lithologic Unit IV may have been derived from a hydrothermal source at the adjacent, then active, Labrador Sea mid-ocean ridge. Authigenic smectites forming numerous pseudomorphs of siliceous microfossils are precipitated in burrow structures. We propose that diagenetic smectite formation from biogenic opal and iron oxyhydroxide (analogous to smectite formation in surface sediments of the East Pacific area) occurred in the Labrador Sea during the early and middle Eocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basalts from some holes of the Deep Sea Drilling Project contain secondary K-feldspar which forms pseudomorphs after calcic (>76% An) Plagioclase cores, whereas Plagioclase of rims and microlites (68-74% An) remains unaltered. In basalts of Hole 504B two such grains with relics of Plagioclase in the central parts of phenocysts were recovered. The composition of the Plagioclase rims and of non-replaced phenocrysts is An79-81; the composition of relics is An83. The An and Ab contents of the K-feldspar is higher than in K-feldspar from altered basalt in Hole 418A in the Atlantic Ocean near the Bermuda Rise. Replacement of plagioclases by K-feldspar evidently is caused by oxygen-rich nearbottom sea water penetrating into basalts. The temperature interval of K-feldspathization is probably in the range 30 to 80°C, more-calcic Plagioclase being replaced by K-feldspar at higher temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report here chemical analyses of sulfide and other minerals occurring in the massive sulfide deposit cored at Site 471. Details of the mineralogy and inferred paragenesis of the deposit will be reported elsewhere. The sulfide deposit at Site 471 occurs between overlying pelagic sediment and underlying basalt. The deposit is vertically zoned and consists, from top to bottom, of the following mineral assemblages: (1) pyrite, chalcopyrite, and Zn-sulfide in chert and calcite gangue (about 35 cm thick); (2) a 5-cm-thick metalliferous sediment layer described in detail by Leinen (this volume); and (3) a 4-cm-thick chert layer. The overlying sediment is a calcareous silty claystone that contains middle Miocene coccoliths (Bukry, this volume). The underlying basalt has been extensively chloritized and veined with calcite. In places feldspars are albitized, and calcite occurs as pseudomorphs after olivine. Relict textures suggest that the basalt grades into diabase and gabbro with increasing depth. Neither stock work nor disseminated sulfides was observed in the altered rocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Leg 188 of the Ocean Drilling Program (ODP), employing JOIDES Resolution, we drilled holes at three sites in the southern Indian Ocean in and near Prydz Bay, East Antarctica, between 28 January and 29 February 2000. The objectives of the voyage were to: - Core through sediments deposited when Antarctica underwent the transition from "greenhouse" to the modern "icehouse" state late in the Eocene or early in the Oligocene, at sites obtaining their sediment from the currently subglacial Gamburtsev Mountains that probably were the site of nucleation of the ice sheet (principally Site 1166); - Obtain a sediment record from times at which major changes in the ice sheet volume and characteristics took place as judged from oxygen isotope records, especially at ~23.7 Ma (Oligocene/Miocene boundary), 12-16 Ma (middle Miocene), and 2.7 Ma (late Pliocene) (mainly Site 1165); and - Sample through the upper Pliocene and Quaternary in an attempt to document fluctuations in the extent of the ice sheet over the continental shelf during the Quaternary (especially Site 1167). Paleogene foraminifer-bearing marine sections were not intersected, and thus discussion of marine sections is restricted to the Neogene. Foraminifers are not major contributors to Leg 188 chronostratigraphy but contribute to paleoenvironmental interpretation, to issues such as carbonate compensation depth (CCD) effects and source and history of sediment, and provide a basis for Sr and d18O studies. Chronostratigraphy for the various sections was compiled from diatoms, radiolarians, and paleomagnetism (Shipboard Scientific Party, 2001, doi:10.2973/odp.proc.ir.188.101.2001). Foraminifers were sporadic rather than continuous except in short intervals; however, the Neogene foraminifers from the region are very poorly known and the new records proved to be of significant value in paleoenvironmental interpretation. Only at Site 1167 did drilling intersect a section that yielded foraminifers virtually throughout. Other than for the very young section at each site, there is virtually no continuity of assemblages between sites and thus each section is treated here as separate and unrelated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we describe textural relationships in hydrated upper mantle peridotites emplaced at a nonconstructive ridge segment. Development of serpentinites and partially serpentinized peridotites takes place in four main stages: (1) pervasive serpentinization forming mainly lizardite, (2) a tensional stage forming chrysotile + talc + chlorite, (3) a deformational stage forming antigorite + tremolite, and (4) a late local tensional stage forming another generation of chrysotile veinlets. Mineral chemistry of serpentine pseudomorphs reflects in part primary mineral compositions. Olivine pseudomorphs are typically nickeliferous and depleted in aluminum and chromium. Orthopyroxene pseudomorphs have lower nickel contents and relatively high iron, aluminum, and chromium contents. Clinopyroxene pseudomorphs have very low nickel contents and relatively high aluminum and chromium contents. These chemical patterns in the serpentinites can be used to help discriminate between harzburgitic and lherzolitic protoliths. Oxygen isotopes and mineral parageneses suggest serpentine is derived from circulation of hydrothermal (200?C) fluids through the peridotite body. Crystallization of tremolite, talc, and chlorite may have occurred at temperatures up to 525?C if C02/H20 ratios were less than 0.25. Open fissures developing in aging upper mantle provide paths for important seawater circulation through a thin basaltic carapace down to shallow mantle rocks.