948 resultados para Protein-fragment Complementation Assay


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considerable efforts have been directed toward the identification of small-ruminant prion diseases, i.e., classical and atypical scrapie as well as bovine spongiform encephalopathy (BSE). Here we report the in-depth molecular analysis of the proteinase K-resistant prion protein core fragment (PrP(res)) in a highly scrapie-affected goat flock in Greece. The PrP(res) profile by Western immunoblotting in most animals was that of classical scrapie in sheep. However, in a series of clinically healthy goats we identified a unique C- and N-terminally truncated PrP(res) fragment, which is akin but not identical to that observed for atypical scrapie. These findings reveal novel aspects of the nature and diversity of the molecular PrP(res) phenotypes in goats and suggest that these animals display a previously unrecognized prion protein disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La quantité de données générée dans le cadre d'étude à grande échelle du réseau d'interaction protéine-protéine dépasse notre capacité à les analyser et à comprendre leur sens; d'une part, par leur complexité et leur volume, et d'un autre part, par la qualité du jeu de donnée produit qui semble bondé de faux positifs et de faux négatifs. Cette dissertation décrit une nouvelle méthode de criblage des interactions physique entre protéines à haut débit chez Saccharomyces cerevisiae, la complémentation de fragments protéiques (PCA). Cette approche est accomplie dans des cellules intactes dans les conditions natives des protéines; sous leur promoteur endogène et dans le respect des contextes de modifications post-traductionnelles et de localisations subcellulaires. Une application biologique de cette méthode a permis de démontrer la capacité de ce système rapporteur à répondre aux questions d'adaptation cellulaire à des stress, comme la famine en nutriments et un traitement à une drogue. Dans le premier chapitre de cette dissertation, nous avons présenté un criblage des paires d'interactions entre les protéines résultant des quelques 6000 cadres de lecture de Saccharomyces cerevisiae. Nous avons identifié 2770 interactions entre 1124 protéines. Nous avons estimé la qualité de notre criblage en le comparant à d'autres banques d'interaction. Nous avons réalisé que la majorité de nos interactions sont nouvelles, alors que le chevauchement avec les données des autres méthodes est large. Nous avons pris cette opportunité pour caractériser les facteurs déterminants dans la détection d'une interaction par PCA. Nous avons remarqué que notre approche est sous une contrainte stérique provenant de la nécessité des fragments rapporteurs à pouvoir se rejoindre dans l'espace cellulaire afin de récupérer l'activité observable de la sonde d'interaction. L'intégration de nos résultats aux connaissances des dynamiques de régulations génétiques et des modifications protéiques nous dirigera vers une meilleure compréhension des processus cellulaires complexes orchestrés aux niveaux moléculaires et structuraux dans les cellules vivantes. Nous avons appliqué notre méthode aux réarrangements dynamiques opérant durant l'adaptation de la cellule à des stress, comme la famine en nutriments et le traitement à une drogue. Cette investigation fait le détail de notre second chapitre. Nous avons déterminé de cette manière que l'équilibre entre les formes phosphorylées et déphosphorylées de l'arginine méthyltransférase de Saccharomyces cerevisiae, Hmt1, régulait du même coup sont assemblage en hexamère et son activité enzymatique. L'activité d'Hmt1 a directement un impact dans la progression du cycle cellulaire durant un stress, stabilisant les transcrits de CLB2 et permettant la synthèse de Cln3p. Nous avons utilisé notre criblage afin de déterminer les régulateurs de la phosphorylation d'Hmt1 dans un contexte de traitement à la rapamycin, un inhibiteur de la kinase cible de la rapamycin (TOR). Nous avons identifié la sous-unité catalytique de la phosphatase PP2a, Pph22, activé par l'inhibition de la kinase TOR et la kinase Dbf2, activé durant l'entrée en mitose de la cellule, comme la phosphatase et la kinase responsable de la modification d'Hmt1 et de ses fonctions de régulations dans le cycle cellulaire. Cette approche peut être généralisée afin d'identifier et de lier mécanistiquement les gènes, incluant ceux n'ayant aucune fonction connue, à tout processus cellulaire, comme les mécanismes régulant l'ARNm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Described here is a mass spectrometry-based screening assay for the detection of protein-ligand binding interactions in multicomponent protein mixtures. The assay utilizes an oxidation labeling protocol that involves using hydrogen peroxide to selectively oxidize methionine residues in proteins in order to probe the solvent accessibility of these residues as a function of temperature. The extent to which methionine residues in a protein are oxidized after specified reaction times at a range of temperatures is determined in a MALDI analysis of the intact proteins and/or an LC-MS analysis of tryptic peptide fragments generated after the oxidation reaction is quenched. Ultimately, the mass spectral data is used to construct thermal denaturation curves for the detected proteins. In this proof-of-principle work, the protocol is applied to a four-protein model mixture comprised of ubiquitin, ribonuclease A (RNaseA), cyclophilin A (CypA), and bovine carbonic anhydrase II (BCAII). The new protocol's ability to detect protein-ligand binding interactions by comparing thermal denaturation data obtained in the absence and in the presence of ligand is demonstrated using cyclosporin A (CsA) as a test ligand. The known binding interaction between CsA and CypA was detected using both the MALDI- and LC-MS-based readouts described here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A split-EGFP bimolecular fluorescence complementation assay was used to visualise and locate three interacting pairs of proteins from the GAL genetic switch of the budding yeast, Saccharomyces cerevisiae. Both the Gal4p-Gal80p and Gal80p-Gal3p pairs were found to be located in the nucleus under inducing conditions. However, the Gal80p-Gal1p complex was located throughout the cell. These results support recent work establishing an initial interaction between Gal3p and Gal80p occurring in the nucleus. Labelling of all three protein pairs impaired the growth of the yeast strains and resulted in reduced galactokinase activity in cell extracts. The most likely cause of this impairment is decreased dissociation rates of the complexes, caused by the essentially irreversible reassembly of the EGFP fragments. This suggests that a fully functional GAL genetic switch requires dynamic interactions between the protein components. These results also highlight the need for caution in the interpretation of in vivo split-EGFP experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In unicellular eukaryotes, such as Saccharomyces cerevisiae, and in multicellular organisms, the replication origin is recognized by the heterohexamer origin recognition complex (ORC) containing six proteins, Orc1 to Orc6, while in members of the domain Archaea, the replication origin is recognized by just one protein, Orc1/Cdc6; the sequence of Orc1/Cdc6 is highly related to those of Orc1 and Cdc6. Similar to Archaea, trypanosomatid genomes contain only one gene encoding a protein named Orc1. Since trypanosome Orc1 is also homologous to Cdc6, in this study we named the Orc1 protein from trypanosomes Orc1/Cdc6. Here we show that the recombinant Orc1/Cdc6 from Trypanosoma cruzi (TcOrc1/Cdc6) and from Trypanosoma brucei (TbOrc1/Cdc6) present ATPase activity, typical of prereplication machinery components. Also, TcOrc1/Cdc6 and TbOrc1/Cdc6 replaced yeast Cdc6 but not Orc1 in a phenotypic complementation assay. The induction of Orc1/Cdc6 silencing by RNA interference in T. brucei resulted in enucleated cells, strongly suggesting the involvement of Orc1/Cdc6 in DNA replication. Orc1/Cdc6 is expressed during the entire cell cycle in the nuclei of trypanosomes, remaining associated with chromatin in all stages of the cell cycle. These results allowed us to conclude that Orc1/Cdc6 is indeed a member of the trypanosome prereplication machinery and point out that trypanosomes carry a prereplication machinery that is less complex than other eukaryotes and closer to archaea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A plasmid based genetic system was developed for the tail protein of the Salmonella typhimurium bacteriophage P22 and used to isolate and characterize tail protein mutants. The tail protein is a trimeric structural protein of the phage and an endorhamnosidase whose activity is essential for infection. The gene for the tail protein has previously been cloned into a plasmid expression vector and sequenced. A plate complementation assay for tail protein produced from the cloned gene was developed and used to isolate 27 tail protein mutants following mutagenesis of the cloned gene. These mutations were mapped into 12 deletion intervals using deletions which were made on plasmids in vitro and crossed onto P22. The base substitutions were determined by DNA sequencing. The majority of mutants had missense or nonsense mutations in the protein coding portion of the gene; however four of the mutants were in the putative transcription terminator. The oligomeric state of tail protein from the 15 missense mutants was investigated using SDS and nondenaturing polyacrylamide gel electrophoresis of cell lysates. Wild-type tail protein retains its trimeric structure in SDS gels at room temperature. Two of the mutant proteins also migrated as trimers in SDS gels, yet one of these had a considerably faster mobility than wild-type trimer. Its migration was the same as wild-type in a nondenaturing gel, so it is thought to be a trimer which is partially denatured by SDS. Four of the mutants produced proteins which migrate at the position of a monomer in an SDS gel but cannot be seen on a nondenaturing gel. These proteins are thought to be either monomers or soluble aggregates which cannot enter the nondenaturing gel. The remainder of mutants produce protein which is degraded. The mutant tail protein which had normal trimeric mobility on SDS and nondenaturing gels was purified. This protein has essentially wild-type ability to attach to phage capsids, but its endorhamnosidase activity is only 4% of wild-type. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Topological frustration in an energetically unfrustrated off-lattice model of the helical protein fragment B of protein A from Staphylococcus aureus was investigated. This Gō-type model exhibited thermodynamic and kinetic signatures of a well-designed two-state folder with concurrent collapse and folding transitions and single exponential kinetics at the transition temperature. Topological frustration is determined in the absence of energetic frustration by the distribution of Fersht φ values. Topologically unfrustrated systems present a unimodal distribution sharply peaked at intermediate φ, whereas highly frustrated systems display a bimodal distribution peaked at low and high φ values. The distribution of φ values in protein A was determined both thermodynamically and kinetically. Both methods yielded a unimodal distribution centered at φ = 0.3 with tails extending to low and high φ values, indicating the presence of a small amount of topological frustration. The contacts with high φ values were located in the turn regions between helices I and II and II and III, intimating that these hairpins are in large part required in the transition state. Our results are in good agreement with all-atom simulations of protein A, as well as lattice simulations of a three- letter code 27-mer (which can be compared with a 60-residue helical protein). The relatively broad unimodal distribution of φ values obtained from the all-atom simulations and that from the minimalist model for the same native fold suggest that the structure of the transition state ensemble is determined mostly by the protein topology and not energetic frustration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcription factor TFIIIB plays a central role in transcription initiation by RNA polymerase III on genes encoding tRNA, 5S rRNA, and other small structural RNAs. We report the purification of a human TFIIIB-derived complex containing only the TATA-binding polypeptide (TBP) and a 90-kDa subunit (TFIIIB90) and the isolation of a cDNA clone encoding the 90-kDa subunit. The N-terminal half of TFIIIB90 exhibits sequence similarity to the yeast TFIIIB70 (BRF) and the class II transcription factor TFIIB and interacts weakly with TBP. The C-terminal half of TFIIIB90 contains a high-mobility-group protein 2 (HMG2)-related domain and interacts strongly with TBP. Recombinant TFIIIB90 plus recombinant human TBP substitute for human TFIIIB in a complementation assay for transcription of 5S, tRNA, and VA1 RNA genes, and both the TFIIB-related domain and the HMG2-related domain are required for this activity. TFIIIB90 is also required for transcription of human 7SK and U6 RNA genes by RNA polymerase III, but apparently within a complex distinct from the TBP/TFIIIB90 complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the development of a capture enzyme-linked immunosorbent assay for the detection of the dengue virus nonstructural protein NS1. The assay employs rabbit polyclonal and monoclonal antibodies as the capture and detection antibodies, respectively. Immunoaffinity-purified NS1 derived from dengue 2 virus-infected cells was used as a standard to establish a detection sensitivity of approximately 4 ng/ml for an assay employing monoclonal antibodies recognizing a dengue 2 serotype-specific epitope. A number of serotype cross-reactive monoclonal antibodies were also shown to be suitable probes for the detection of NS1 expressed by the remaining three dengue virus serotypes. Examination of clinical samples demonstrated that the assay was able to detect NS1 with minimal interference from serum components at the test dilutions routinely used, suggesting that it could form the basis of a useful additional diagnostic test for dengue virus infection. Furthermore, quantitation of NS1 levels in patient sera may prove to be a valuable surrogate marker for viremia. Surprisingly high levels of NS1, as much as 15 mu g/ml, were found in acute-phase sera taken hom some of the patients experiencing serologically confirmed dengue 2 virus secondary infections but was not detected in the convalescent sera of these patients. In contrast, NS1 could not be detected in either acute-phase or convalescent serum samples taken from patients with serologically confirmed primary infection. The presence of high levels of secreted NS1 in the sera of patients experiencing secondary dengue virus infections, and in the context of an anamnestic antibody response, suggests that NS1 may contribute significantly to the formation of the circulating immune complexes that are suspected to play an important role in the pathogenesis of severe dengue disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a new protein microarray (Immuno-Flow Protein Platform, IFPP) that utilizes a porous nitrocellulose (NC) membrane with printed spots of capture probes. The sample is pumped actively through the NC membrane, to enhance binding efficiency and introduce stringency. Compared to protein microarrays assayed with the conventional incubation-shaking method the rate of binding is enhanced on the IFPP by at least a factor of 10, so that the total assay time can be reduced drastically without compromising sensitivity. Similarly, the sensitivity can be improved. We demonstrate the detection of 1 pM of C-reactive protein (CRP) in 70 mu L of plasma within a total assay time of 7 min. The small sample and reagent volumes, combined with the speed of the assay, make our IFPP also well-suited for a point-of-care/near-patient setting. The potential clinical application of the IFPP is demonstrated by validating CRP detection both in human plasma and serum samples against standard clinical laboratory methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNase S is a complex consisting of two proteolytic fragments of RNase A: the S peptide (residues 1-20) and S protein (residues 21-124). RNase S and RNase A have very similar X-ray structures and enzymatic activities. previous experiments have shown increased rates of hydrogen exchange and greater sensitivity to tryptic cleavage for RNase S relative to RNase A. It has therefore been asserted that the RNase S complex is considerably more dynamically flexible than RNase A. In the present study we examine the differences in the dynamics of RNaseS and RNase A computationally, by MD simulations, and experimentally, using trypsin cleavage as a probe of dynamics. The fluctuations around the average solution structure during the simulation were analyzed by measuring the RMS deviation in coordinates. No significant differences between RNase S and RNase A dynamics were observed in the simulations. We were able to account for the apparent discrepancy between simulation and experiment by a simple model, According to this model, the experimentally observed differences in dynamics can be quantitatively explained by the small amounts of free S peptide and S protein that are present in equilibrium with the RNase S complex. Thus, folded RNase A and the RNase S complex have identical dynamic behavior, despite the presence of a break in polypeptide chain between residues 20 and 21 in the latter molecule. This is in contrast to what has been widely believed for over 30 years about this important fragment complementation system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large numbers of Plasmodium genes have been predicted to have introns. However, little information exists on the splicing mechanisms in this organism. Here, we describe the DExD/DExH-box containing Pre-mRNA processing proteins (Prps), PfPrp2p, PfPrp5p, PfPrp16p, PfPrp22p, PfPrp28p, PfPrp43p and PfBrr2p, present in the Plasmodium falciparum genome and characterized the role of one of these factors, PfPrp16p. It is a member of DEAH-box protein family with nine collinear sequence motifs, a characteristic of helicase proteins. Experiments with the recombinantly expressed and purified PfPrp16 helicase domain revealed binding to RNA, hydrolysis of ATP as well as catalytic helicase activities. Expression of helicase domain with the C-terminal helicase-associated domain (HA2) reduced these activities considerably, indicating that the helicase-associated domain may regulate the PfPrp16 function. Localization studies with the PfPrp16 GFP transgenic lines suggested a role of its N-terminal domain (1-80 amino acids) in nuclear targeting. Immunodepletion of PfPrp16p, from nuclear extracts of parasite cultures, blocked the second catalytic step of an in vitro constituted splicing reaction suggesting a role for PfPrp16p in splicing catalysis. Further we show by complementation assay in yeast that a chimeric yeast-Plasmodium Prp16 protein, not the full length PfPrp16, can rescue the yeast prp16 temperature-sensitive mutant. These results suggest that although the role of Prp16p in catalytic step II is highly conserved among Plasmodium, human and yeast, subtle differences exist with regards to its associated factors or its assembly with spliceosomes. (C) 2012 Elsevier B.V. All rights reserved.