949 resultados para Protein structure prediction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein structure prediction is a cornerstone of bioinformatics research. Membrane proteins require their own prediction methods due to their intrinsically different composition. A variety of tools exist for topology prediction of membrane proteins, many of them available on the Internet. The server described in this paper, BPROMPT (Bayesian PRediction Of Membrane Protein Topology), uses a Bayesian Belief Network to combine the results of other prediction methods, providing a more accurate consensus prediction. Topology predictions with accuracies of 70% for prokaryotes and 53% for eukaryotes were achieved. BPROMPT can be accessed at http://www.jenner.ac.uk/BPROMPT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe two ways of optimizing score functions for protein sequence to structure threading. The first method adjusts parameters to improve sequence to structure alignment. The second adjusts parameters so as to improve a score function's ability to rank alignments calculated in the first score function. Unlike those functions known as knowledge-based force fields, the resulting parameter sets do not rely on Boltzmann statistics, have no claim to representing free energies and are purely constructions for recognizing protein folds. The methods give a small improvement, but suggest that functions can be profitably optimized for very specific aspects of protein fold recognition, Proteins 1999;36:454-461. (C) 1999 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventionally, protein structure prediction via threading relies on some nonoptimal method to align a protein sequence to each member of a library of known structures. We show how a score function (force field) can be modified so as to allow the direct application of a dynamic programming algorithm to the problem. This involves an approximation whose damage can be minimized by an optimization process during score function parameter determination. The method is compared to sequence to structure alignments using a more conventional pair-wise score function and the frozen approximation. The new method produces results comparable to the frozen approximation, but is faster and has fewer adjustable parameters. It is also free of memory of the template's original amino acid sequence, and does not suffer from a problem of nonconvergence, which can be shown to occur with the frozen approximation. Alignments generated by the simplified score function can then be ranked using a second score function with the approximations removed. (C) 1999 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimentally, Ce2O3 films are used to study cerium oxide in its fully or partially reduced state, as present in many applications. We have explored the space of low energy Ce2O3 nanofilms using structure prediction and density functional calculations, yielding more than 30 distinct nanofilm structures. First, our results help to rationalize the roles of thermodynamics and kinetics in the preparation of reduced ceria nanofilms with different bulk crystalline structures (e.g. A-type or bixbyite) depending on the support used. Second, we predict a novel, as yet experimentally unresolved, nanofilm which has a structure that does not correspond to any previously reported bulk A2B3 phase and which has an energetic stability between that of A-type and bixbyite. To assist identification and fabrication of this new Ce2O3 nanofilm we calculate some observable properties and propose supports for its epitaxial growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recombinant heat shock protein (18 kDa-hsp) from Mycobacterium leprae was studied as a T-epitope model for vaccine development. We present a structural analysis of the stability of recombinant 18 kDa-hsp during different processing steps. Circular dichroism and ELISA were used to monitor protein structure after thermal stress, lyophilization and chemical modification. We observed that the 18 kDa-hsp is extremely resistant to a wide range of temperatures (60% of activity is retained at 80ºC for 20 min). N-Acylation increased its ordered structure by 4% and decreased its ß-T1 structure by 2%. ELISA demonstrated that the native conformation of the 18 kDa-hsp was preserved after hydrophobic modification by acylation. The recombinant 18 kDa-hsp resists to a wide range of temperatures and chemical modifications without loss of its main characteristic, which is to be a source of T epitopes. This resistance is probably directly related to its lack of organization at the level of tertiary and secondary structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A thorough understanding of protein structure and stability requires that we elucidate the molecular basis for the effects of both temperature and pressure on protein conformational transitions. While temperature effects are relatively well understood and the change in heat capacity upon unfolding has been reasonably well parameterized, the state of understanding of pressure effects is much less advanced. Ultimately, a quantitative parameterization of the volume changes (at the basis of pressure effects) accompanying protein conformational transitions will be required. The present report introduces a qualitative hypothesis based on available model compound data for the molecular basis of volume change upon protein unfolding and its dependence on temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined computational and experimental polymorph search was undertaken to establish the crystal forms of 7-fluoroisatin, a simple molecule with no reported crystal structures, to evaluate the value of crystal structure prediction studies as an aid to solid form discovery. Three polymorphs were found in a manual crystallisation screen, as well as two solvates. Form I ( P2(1)/c, Z0 1), found from the majority of solvent evaporation experiments, corresponded to the most stable form in the computational search of Z0 1 structures. Form III ( P21/ a, Z0 2) is probably a metastable form, which was only found concomitantly with form I, and has the same dimeric R2 2( 8) hydrogen bonding motif as form I and the majority of the computed low energy structures. However, the most thermodynamically stable polymorph, form II ( P1 , Z0 2), has an expanded four molecule R 4 4( 18) hydrogen bonding motif, which could not have been found within the routine computational study. The computed relative energies of the three forms are not in accord with experimental results. Thus, the experimental finding of three crystalline polymorphs of 7- fluoroisatin illustrates the many challenges for computational screening to be a tool for the experimental crystal engineer, in contrast to the results for an analogous investigation of 5- fluoroisatin.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The IntFOLD-TS method was developed according to the guiding principle that the model quality assessment would be the most critical stage for our template based modelling pipeline. Thus, the IntFOLD-TS method firstly generates numerous alternative models, using in-house versions of several different sequence-structure alignment methods, which are then ranked in terms of global quality using our top performing quality assessment method – ModFOLDclust2. In addition to the predicted global quality scores, the predictions of local errors are also provided in the resulting coordinate files, using scores that represent the predicted deviation of each residue in the model from the equivalent residue in the native structure. The IntFOLD-TS method was found to generate high quality 3D models for many of the CASP9 targets, whilst also providing highly accurate predictions of their per-residue errors. This important information may help to make the 3D models that are produced by the IntFOLD-TS method more useful for guiding future experimental work

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An automatic method for recognizing natively disordered regions from amino acid sequence is described and benchmarked against predictors that were assessed at the latest critical assessment of techniques for protein structure prediction (CASP) experiment. The method attains a Wilcoxon score of 90.0, which represents a statistically significant improvement on the methods evaluated on the same targets at CASP. The classifier, DISOPRED2, was used to estimate the frequency of native disorder in several representative genomes from the three kingdoms of life. Putative, long (>30 residue) disordered segments are found to occur in 2.0% of archaean, 4.2% of eubacterial and 33.0% of eukaryotic proteins. The function of proteins with long predicted regions of disorder was investigated using the gene ontology annotations supplied with the Saccharomyces genome database. The analysis of the yeast proteome suggests that proteins containing disorder are often located in the cell nucleus and are involved in the regulation of transcription and cell signalling. The results also indicate that native disorder is associated with the molecular functions of kinase activity and nucleic acid binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

If secondary structure predictions are to be incorporated into fold recognition methods, an assessment of the effect of specific types of errors in predicted secondary structures on the sensitivity of fold recognition should be carried out. Here, we present a systematic comparison of different secondary structure prediction methods by measuring frequencies of specific types of error. We carry out an evaluation of the effect of specific types of error on secondary structure element alignment (SSEA), a baseline fold recognition method. The results of this evaluation indicate that missing out whole helix or strand elements, or predicting the wrong type of element, is more detrimental than predicting the wrong lengths of elements or overpredicting helix or strand. We also suggest that SSEA scoring is an effective method for assessing accuracy of secondary structure prediction and perhaps may also provide a more appropriate assessment of the “usefulness” and quality of predicted secondary structure, if secondary structure alignments are to be used in fold recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The estimation of prediction quality is important because without quality measures, it is difficult to determine the usefulness of a prediction. Currently, methods for ligand binding site residue predictions are assessed in the function prediction category of the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiment, utilizing the Matthews Correlation Coefficient (MCC) and Binding-site Distance Test (BDT) metrics. However, the assessment of ligand binding site predictions using such metrics requires the availability of solved structures with bound ligands. Thus, we have developed a ligand binding site quality assessment tool, FunFOLDQA, which utilizes protein feature analysis to predict ligand binding site quality prior to the experimental solution of the protein structures and their ligand interactions. The FunFOLDQA feature scores were combined using: simple linear combinations, multiple linear regression and a neural network. The neural network produced significantly better results for correlations to both the MCC and BDT scores, according to Kendall’s τ, Spearman’s ρ and Pearson’s r correlation coefficients, when tested on both the CASP8 and CASP9 datasets. The neural network also produced the largest Area Under the Curve score (AUC) when Receiver Operator Characteristic (ROC) analysis was undertaken for the CASP8 dataset. Furthermore, the FunFOLDQA algorithm incorporating the neural network, is shown to add value to FunFOLD, when both methods are employed in combination. This results in a statistically significant improvement over all of the best server methods, the FunFOLD method (6.43%), and one of the top manual groups (FN293) tested on the CASP8 dataset. The FunFOLDQA method was also found to be competitive with the top server methods when tested on the CASP9 dataset. To the best of our knowledge, FunFOLDQA is the first attempt to develop a method that can be used to assess ligand binding site prediction quality, in the absence of experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein structure prediction methods aim to predict the structures of proteins from their amino acid sequences, utilizing various computational algorithms. Structural genome annotation is the process of attaching biological information to every protein encoded within a genome via the production of three-dimensional protein models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model quality assessment programs (MQAPs) aim to assess the quality of modelled 3D protein structures. The provision of quality scores, describing both global and local (per-residue) accuracy are extremely important, as without quality scores we are unable to determine the usefulness of a 3D model for further computational and experimental wet lab studies.Here, we briefly discuss protein tertiary structure prediction, along with the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP) competition and their key role in driving the field of protein model quality assessment methods (MQAPs). We also briefly discuss the top MQAPs from the previous CASP competitions. Additionally, we describe our downloadable and webserver-based model quality assessment methods: ModFOLD3, ModFOLDclust, ModFOLDclustQ, ModFOLDclust2, and IntFOLD-QA. We provide a practical step-by-step guide on using our downloadable and webserver-based tools and include examples of their application for improving tertiary structure prediction, ligand binding site residue prediction, and oligomer predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IntFOLD is an independent web server that integrates our leading methods for structure and function prediction. The server provides a simple unified interface that aims to make complex protein modelling data more accessible to life scientists. The server web interface is designed to be intuitive and integrates a complex set of quantitative data, so that 3D modelling results can be viewed on a single page and interpreted by non-expert modellers at a glance. The only required input to the server is an amino acid sequence for the target protein. Here we describe major performance and user interface updates to the server, which comprises an integrated pipeline of methods for: tertiary structure prediction, global and local 3D model quality assessment, disorder prediction, structural domain prediction, function prediction and modelling of protein-ligand interactions. The server has been independently validated during numerous CASP (Critical Assessment of Techniques for Protein Structure Prediction) experiments, as well as being continuously evaluated by the CAMEO (Continuous Automated Model Evaluation) project. The IntFOLD server is available at: http://www.reading.ac.uk/bioinf/IntFOLD/