930 resultados para Prostate Secretory Granule
Resumo:
OBJECTIVE: Thiol isomerases facilitate protein folding in the endoplasmic reticulum, and several of these enzymes, including protein disulfide isomerase and ERp57, are mobilized to the surface of activated platelets, where they influence platelet aggregation, blood coagulation, and thrombus formation. In this study, we examined the synthesis and trafficking of thiol isomerases in megakaryocytes, determined their subcellular localization in platelets, and identified the cellular events responsible for their movement to the platelet surface on activation. APPROACH AND RESULTS: Immunofluorescence microscopy imaging was used to localize protein disulfide isomerase and ERp57 in murine and human megakaryocytes at various developmental stages. Immunofluorescence microscopy and subcellular fractionation analysis were used to localize these proteins in platelets to a compartment distinct from known secretory vesicles that overlaps with an inner cell-surface membrane region defined by the endoplasmic/sarcoplasmic reticulum proteins calnexin and sarco/endoplasmic reticulum calcium ATPase 3. Immunofluorescence microscopy and flow cytometry were used to monitor thiol isomerase mobilization in activated platelets in the presence and absence of actin polymerization (inhibited by latrunculin) and in the presence or absence of membrane fusion mediated by Munc13-4 (absent in platelets from Unc13dJinx mice). CONCLUSIONS: Platelet-borne thiol isomerases are trafficked independently of secretory granule contents in megakaryocytes and become concentrated in a subcellular compartment near the inner surface of the platelet outer membrane corresponding to the sarco/endoplasmic reticulum of these cells. Thiol isomerases are mobilized to the surface of activated platelets via a process that requires actin polymerization but not soluble N-ethylmaleimide-sensitive fusion protein attachment receptor/Munc13-4-dependent vesicular-plasma membrane fusion.
Resumo:
This study investigates the presence and the localization of acid phosphatase and ATPase in the salivary glands of Rhipicephalus (Boophilus) microplus female ticks during feeding. Semi-engorged females showed a larger amount of acid phosphatase compared to those at beginning of feeding, localized mainly in the apical portion of the secretory cells, and in the basal labyrinth of the interstitial cells. Ultrastructural observations also demonstrated its presence in secretion granules and inside some nuclei of secretory cells at beginning of feeding. Acid phosphatase in a free form probably has a hemolymph and/or ribosomal origin and participates in salivary gland secretion control. ATPase was detected in basal membrane of all types of acini and/or in the cytoplasm of the secretory cells at both feeding stages. The enzyme activities found strongly suggests that cell death by apoptosis occurs during the degenerative process. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca2 2+ signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca2 2+signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally,weexplored the status of Ca2 2+-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase Cα as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the β-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity. Copyright © 2010 by The Endocrine Society.
Resumo:
The morphology of the parotid and submandibular glands in the marten, a carnivore, were studied and analyzed under a transmission electron microscope. The nature of the granules in both glands, as well as in the acini and in the secretory tubules, is rather mucous. The structure of the secretory tubules is very characteristic, especially the striated ones. The myoepithelial cells are close to the acini and tubules and covered by the basement membrane separating them from the connective tissue, which enhances its epithelial origin. The cytoplasm of the basal parts of the acinar and tubular cells is abundant and separates the nucleus from the secretion granules. Although the morphology of the salivary glands of many carnivores is known, those of the parotid gland of the marten present peculiar characteristics, since they produce a rather mucous saliva and the granules, when forming, are far from the base as well as from the apex of the secretory cells. The submandibular gland contains granules of different densities, an aspect that in general resembles that of other animals.
Resumo:
Although snake infralabial glands are generally constituted of mucous cells, among dipsadines, they are much more developed and predominantly serous in nature, possibly due to the peculiar feeding habits of some species of this group, the ""goo-eaters"", which feed on soft and viscous invertebrates. We compared the morphology and histochemistry of the infralabial glands of three goo-eater species of Southeast Brazil, Atractus reticulatus, Dipsas indica and Sibynomorphus mikanii. In A. reticulatus the glands are formed by mixed acini composed of mucous and seromucous cells and in D. indica, they are composed of mucous tubules and seromucous acini. In S. mikanii the glands are organized in seromucous acini; mucous cells are restricted to the gland anterior region and to the duct lining epithelium. Ultrastructurally, secretory granule electron density varies from low to moderate, depending on their mucous or seromucous nature. The results indicate a large morphological and histochemical variation in the infralabial glands, probably reflecting differences in the secretion chemical composition and in feeding specialization among the three species. The protein content in the secretory cells can be related with the presence of toxins that can be used in chemical prey immobilization or detaching of snails from their shells. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Human growth hormone (GH) causes a variety of physiological and metabolic effects in humans and plays a pivotal role in postnatal growth. In somatotroph cells of the anterior pituitary, GH is stored in concentrated forms in secretory granules to be rapidly released upon GH-releasing hormone stimulation. During the process of secretory granule biogenesis, self-association of GH occurs in the compartments of the early secretory pathway (endoplasmic reticulum and Golgi complex). Since this process is greatly facilitated by the presence of zinc ions, it is of importance to understand the potential role of zinc transporters that participate in the fine-tuning of zinc homeostasis and dynamics, particularly in the early secretory pathway. Thus, the role of zinc transporters in supplying the secretory pathway with the sufficient amount of zinc required for the biogenesis of GH-containing secretory granules is essential for normal secretion. This report, illustrated by a clinical case report on transient neonatal zinc deficiency, focuses on the role of zinc in GH storage in the secretory granules and highlights the role of specific zinc transporters in the early secretory pathway.
Resumo:
The neuropeptide galanin is predominantly expressed by the lactotrophs (the prolactin secreting cell type) in the rodent anterior pituitary and in the median eminence and paraventricular nucleus of the hypothalamus. Prolactin and galanin colocalize in the same secretory granule, the expression of both proteins is extremely sensitive to the estrogen status of the animal. The administration of estradiol-17β induces pituitary hyperplasia followed by adenoma formation and causes a 3,000-fold increase in the galanin mRNA content of the lactotroph. To further study the role of galanin in prolactin release and lactotroph growth we now report the generation of mice carrying a loss-of-function mutation of the endogenous galanin gene. There is no evidence of embryonic lethality and the mutant mice grow normally. The specific endocrine abnormalities identified to date, relate to the expression of prolactin. Pituitary prolactin message levels and protein content of adult female mutant mice are reduced by 30–40% compared with wild-type controls. Mutant females fail to lactate and pups die of starvation/dehydration unless fostered onto wild-type mothers. Prolactin secretion in mutant females is markedly reduced at 7 days postpartum compared with wild-type controls with an associated failure in mammary gland maturation. There is an almost complete abrogation of the proliferative response of the lactotroph to high doses of estrogen, with a failure to up-regulate prolactin release, STAT5 expression or to increase pituitary cell number. These data further support the hypothesis that galanin acts as a paracrine regulator of prolactin expression and as a growth factor to the lactotroph.
Resumo:
Mouse mast cells express gp49B1, a cell-surface member of the Ig superfamily encoded by the gp49B gene. We now report that by ALIGN comparison of the amino acid sequence of gp49B1 with numerous receptors of the Ig superfamily, a newly recognized family has been established that includes gp49B1, the human myeloid cell Fc receptor for IgA, the bovine myeloid cell Fc receptor for IgG2, and the human killer cell inhibitory receptors expressed on natural killer cells and T lymphocyte subsets. Furthermore, the cytoplasmic domain of gp49B1 contains two immunoreceptor tyrosine-based inhibition motifs that are also present in killer cell inhibitory receptors; these motifs downregulate natural killer cell and T-cell activation signals that lead to cytotoxic activity. As assessed by flow cytometry with transfectants that express either gp49B1 or gp49A, which are 89% identical in the amino acid sequences of their extracellular domains, mAb B23.1 was shown to recognize only gp49B1. Coligation of mAb B23.1 bound to gp49B1 and IgE fixed to the high-affinity Fc receptor for IgE on the surface of mouse bone marrow-derived mast cells inhibited exocytosis in a dose-related manner, as defined by the release of the secretory granule constituent beta-hexosaminidase, as well as the generation of the membrane-derived lipid mediator, leukotriene C4. Thus, gp49B1 is an immunoreceptor tyrosine-based inhibition motif-containing integral cell-surface protein that downregulates the high-affinity Fc receptor for IgE-mediated release of proinflammatory mediators from mast cells. Our findings establish a novel counterregulatory transmembrane pathway by which mast cell activation can be inhibited.
Resumo:
Tumor-host interaction is a key determinant during cancer progression, from primary tumor growth to metastatic dissemination. At each step, tumor cells have to adapt to and subvert different types of microenvironment, leading to major phenotypic and genotypic alterations that affect both tumor and surrounding stromal compartments. Understanding the molecular mechanisms that govern tumor-host interplay may be essential for better comprehension of tumorigenesis in an effort to improve current anti-cancer therapies. The present work is composed of two projects that address tumor-host interactions from two different perspectives, the first focusing on the characterization of tumor-associated stroma and the second on membrane trafficking in tumor cells. Part 1. To selectively address stromal gene expression changes during cancer progression, oligonucleotide-based Affymetrix microarray technology was used to analyze the transcriptomes of laser-microdissected stromal cells derived from invasive human breast and prostate carcinoma. Comparison showed that invasive breast and prostate cancer elicit distinct, tumor-specific stromal responses, with a limited panel of shared induced and/or repressed genes. Both breast and prostate tumor-specific deregulated stromal gene sets displayed statistically significant survival-predictive ability for their respective tumor type. By contrast, a stromal gene signature common to both tumor types did not display prognostic value, although expression of two individual genes within this common signature was found to be associated with patient survival. Part 2. GLG1 is known as an E-selectin ligand and an intracellular FGF receptor, depending on cell type and context. Immunohistochemical and immunofluorescence analyses showed that GLG1 is primarily localized in the Golgi of human tumor cells, a central location in the biosynthetic/secretory pathways. GLG1 has been shown to interact with and to recruit the ARF GEF BIGI to the Golgi membrane. Depletion of GLG1 or BIGI markedly reduced ARF3 membrane localization and activation, and altered the Golgi structure. Interestingly, these perturbations did not impair constitutive secretion in general, but rather seemed to impair secretion of a specific subset of proteins that includes MMP-9. Thus, GLG1 coordinates ARF3 activation by recruiting BIGI to the Golgi membrane, thereby affecting secretion of specific molecules. - Les interactions tumeur-hôte constituent un élément essentiel à la progression tumorale, de la croissance de la tumeur primaire à la dissémination des métastases. A chaque étape, les cellules tumorales doivent s'adapter à différents types de microenvironnement et les détourner à leur propre avantage, donnant lieu à des altérations phénotypiques et génotypiques majeures qui affectent aussi bien la tumeur elle-même que le compartiment stromal environnant. L'étude des mécanismes moléculaires qui régissent les interactions tumeur-hôte constitue une étape essentielle pour une meilleure compréhension du processus de tumorigenèse dans le but d'améliorer les thérapies anti cancer existantes. Le travail présenté ici est composé de deux projets qui abordent la problématique des interactions tumeur-hôte selon différentes perspectives, le premier se concentrant sur la caractérisation du stroma tumoral et le second sur le trafic intracellulaire des cellules tumorales. Partie 1. Pour examiner les changements d'expression des gènes dans le stroma en réponse à la progression du cancer, des puces à ADN Affymetrix ont été utilisées afin d'analyser les transcriptomes des cellules stromales issues de carcinomes invasifs du sein et de la prostate et collectées par microdissection au laser. L'analyse comparative a montré que les cancers invasifs du sein et de la prostate provoquent des réponses stromales spécifiques à chaque type de tumeur, et présentent peu de gènes induits ou réprimés de façon similaire. L'ensemble des gènes dérégulés dans le stroma associé au cancer du sein, ou à celui de la prostate, présente une valeur pronostique pour les patients atteints d'un cancer du sein, respectivement de la prostate. En revanche, la signature stromale commune aux deux types de cancer n'a aucune valeur prédictive, malgré le fait que l'expression de deux gènes présents dans cette liste soit liée à la survie des patients. Partie 2. GLG1 est connu comme un ligand des sélectines E ainsi que comme récepteur intracellulaire pour des facteurs de croissances FGFs selon le type de cellule dans lequel il est exprimé. Des analyses immunohistochimiques et d'immunofluorescence ont montré que dans les cellules tumorales, GLG1 est principalement localisé au niveau de l'appareil de Golgi, une place centrale dans la voie biosynthétique et sécrétoire. Nous avons montré que GLG1 interagit avec la protéine BIGI et participe à son recrutement à la membrane du Golgi. L'absence de GLG1 ou de BIGI réduit drastiquement le pool d'ARF3 associé aux membranes ainsi que la quantité d'ARF3 activés, et modifie la structure de l'appareil de Golgi. Il est particulièrement intéressant de constater que ces perturbations n'ont pas d'effet sur la sécrétion constitutive en général, mais semblent plutôt affecter la sécrétion spécifique d'un sous-groupe défini de protéines comprenant MMP-9. GLG1 coordonne donc l'activation de ARF3 en recrutant BIGI à la membrane du Golgi, agissant par ce moyen sur la sécrétion de molécules spécifiques.
Resumo:
The prostate of the female gerbil (Meriones unguiculatus) is similar to the human female prostate (Skene gland) and, despite its reduced size, it is functional and shows secretory activity. However, virtually nothing is known about its physiological regulation. This study was thus undertaken to evaluate the behavior of the gerbil female prostate in a hyperandrogenic condition. Adult females received subcutaneous injections of testosterone cypionate (1 mg/kg body weight every 48 h) up to 21 days. Circulating levels of testosterone and estradiol were monitored, and the prostate and ovaries subjected to structural and immunocytochemical analyses. The treatment resulted in sustained high levels of circulating testosterone, and caused a transient increase in estradiol. There was an increase in epithelial cell proliferation accompanied by significant reorganization of the epithelium and an apparent reduction in secretory activity, followed by a progressive increase in luminal volume density and accumulation of secretory products. Immunocytochemistry identified the expression of androgen receptor and a prostate-specific antigen (PSA)-related antigen in prostatic epithelial cells. A circulating PSA-related antigen was also found, and its concentration showed strong negative correlation with circulating estrogen. Epithelial dysplasia was detected in the prostate of treated females. Analysis of the ovaries showed the occurrence of a polycystic condition and stromal cell hyperplasia. The results indicate that testosterone has a stimulatory effect on the female prostate, inducing epithelial cell proliferation, differentiation, secretory activity, and dysplasia. The results also suggest that prostatic growth and activity, polycystic ovaries, and ovarian stromal cell hyperplasia are related to a hyperandrogenic condition in females.
Resumo:
Prostatic lesions in Brazilian patients with benign prostatic hyperplasia (BPH, 26 cases) or adenocarcinoma (AC, 25 cases) were compared by qualitative microscopy and morphometric analysis. In 12 cases of BPH, prostate regions with no histological alterations were considered as controls (Ct). Archival material consisted of formalin-fixed, paraffin-embedded specimens obtained from prostatic transurethral resection and radical prostatectomy. Haematoxylin/eosin (HE)-stained sections were used to estimate the nuclear areas, perimeters and form factor values. HE-stained sections from AC specimens were also used for Gleason grading. BPH, AC and Ct could be discriminated by their nuclear areas and nuclear perimeters, but not by the nuclear form factor parameter. No significant differences were found when the AC data were compared using the combined version or the predominant grade version of the Gleason score (p = 0.8380 for nuclear area; p = 0.6076 for nuclear perimeter; p = 0.9202 for nuclear form factor; n = 200 nuclei per patient). This finding indicates that there is extensive heterogeneity in the size and shape of the nucleus in AC cells. These results also show that although the nuclear morphometry served to discriminate BPH and AC from each other and from Ct, it was not sufficient to correlate AC lesions with their respective Gleason scores in the human population analyzed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Prostate cancer cells in primary tumors have been typed CD10(-)/CD13(-)/CD24(hi)/CD26(+)/CD38(lo)/CD44(-)/CD104(-). This CD phenotype suggests a lineage relationship between cancer cells and luminal cells. The Gleason grade of tumors is a descriptive of tumor glandular differentiation. Higher Gleason scores are associated with treatment failure. Methods: CD26(+) cancer cells were isolated from Gleason 3+3 (G3) and Gleason 4+4 (G4) tumors by cell sorting, and their gene expression or transcriptome was determined by Affymetrix DNA array analysis. Dataset analysis was used to determine gene expression similarities and differences between G3 and G4 as well as to prostate cancer cell lines and histologically normal prostate luminal cells. Results: The G3 and G4 transcriptomes were compared to those of prostatic cell types of non-cancer, which included luminal, basal, stromal fibromuscular, and endothelial. A principal components analysis of the various transcriptome datasets indicated a closer relationship between luminal and G3 than luminal and G4. Dataset comparison also showed that the cancer transcriptomes differed substantially from those of prostate cancer cell lines. Conclusions: Genes differentially expressed in cancer are potential biomarkers for cancer detection, and those differentially expressed between G3 and G4 are potential biomarkers for disease stratification given that G4 cancer is associated with poor outcomes. Differentially expressed genes likely contribute to the prostate cancer phenotype and constitute the signatures of these particular cancer cell types.
Resumo:
Prostate Specific Antigen (PSA) is the biomarker of choice for screening prostate cancer throughout the population, with PSA values above 10 ng/mL pointing out a high probability of associated cancer1. According to the most recent World Health Organization (WHO) data, prostate cancer is the commonest form of cancer in men in Europe2. Early detection of prostate cancer is thus very important and is currently made by screening PSA in men over 45 years old, combined with other alterations in serum and urine parameters. PSA is a glycoprotein with a molecular mass of approximately 32 kDa consisting of one polypeptide chain, which is produced by the secretory epithelium of human prostate. Currently, the standard methods available for PSA screening are immunoassays like Enzyme-Linked Immunoabsorbent Assay (ELISA). These methods are highly sensitive and specific for the detection of PSA, but they require expensive laboratory facilities and high qualify personal resources. Other highly sensitive and specific methods for the detection of PSA have also become available and are in its majority immunobiosensors1,3-5, relying on antibodies. Less expensive methods producing quicker responses are thus needed, which may be achieved by synthesizing artificial antibodies by means of molecular imprinting techniques. These should also be coupled to simple and low cost devices, such as those of the potentiometric kind, one approach that has been proven successful6. Potentiometric sensors offer the advantage of selectivity and portability for use in point-of-care and have been widely recognized as potential analytical tools in this field. The inherent method is simple, precise, accurate and inexpensive regarding reagent consumption and equipment involved. Thus, this work proposes a new plastic antibody for PSA, designed over the surface of graphene layers extracted from graphite. Charged monomers were used to enable an oriented tailoring of the PSA rebinding sites. Uncharged monomers were used as control. These materials were used as ionophores in conventional solid-contact graphite electrodes. The obtained results showed that the imprinted materials displayed a selective response to PSA. The electrodes with charged monomers showed a more stable and sensitive response, with an average slope of -44.2 mV/decade and a detection limit of 5.8X10-11 mol/L (2 ng/mL). The corresponding non-imprinted sensors showed smaller sensitivity, with average slopes of -24.8 mV/decade. The best sensors were successfully applied to the analysis of serum samples, with percentage recoveries of 106.5% and relatives errors of 6.5%.
Resumo:
The nerve supply of the human prostate is very abundant, and knowledge of the anatomy contributes to successful administration of local anesthesia. However, the exact anatomy of extrinsic neuronal cell bodies of the autonomic and sensory innervation of the prostate is not clear, except in other animals. Branches of pelvic ganglia composed of pelvic (parasympathetic) and hypogastric (sympathetic) nerves innervate the prostate. The autonomic nervous system plays an important role in the growth, maturation, and secretory function of this gland. Prostate procedures under local anesthesia, such as transurethral prostatic resections or transrectal ultrasound-guided prostatic biopsy, are safe, simple, and effective. Local anesthesia can be feasible for many special conditions including uncomplicated prostate surgery and may be particularly useful for the high-risk group of patients for whom inhalation or spinal anesthesia is inadvisable.