974 resultados para Proinflammatory Stimuli
Resumo:
In four experiments ERPs to emotional (negative and positive) and neutral stimuli were examined as a function of participants’ trait anxiety and repressivedefensiveness. The experiments investigated the time course of attentional bias in the processing of such stimuli. Pictures of angry, happy, and neutral faces were used in two of the experiments and pictures ofmutilated, happy, and neutral faces were used in the others. ERP’s to emotional and neutral stimuli were recorded from parietal, temporal, and frontal sites. Analysis of the P3 component indicated that the peak magnitude of the P3 at the parietal and temporal sites reflected an interactive function of trait anxiety and defensiveness. Repressors (low reported anxiety, high defensiveness) showed a consistent pattern of greater P3 magnitude at the parietal and temporal sites for emotional faces (angry, happy, and mutilated) than did high-anxious and low-anxious participants. Participants did not differ in P3 magnitude when ERPs to neutral stimuli were investigated (e.g., a fixation cross). The findings indicate that Repressors dedicate greater processing resources to emotional material, as compared to neutral material, than either the high-anxious or low-anxious individuals. Results of the four experiments are discussed within the theoretical framework of Derakshan and Eysenck (1998). The importance of understanding the role of differences in information processing, in the experience and avoidance of emotional information, as a function of trait anxiety and defensiveness is emphasized.
Resumo:
Independent brain circuits appear to underlie different forms of conditioned fear, depending on the type of conditioning used, such as a context or explicit cue paired with footshocks. Several clinical reports have associated damage to the medial temporal lobe (MTL) with retrograde amnesia. Although a number of studies have elucidated the neural circuits underlying conditioned fear, the involvement of MTL components in the aversive conditioning paradigm is still unclear. To address this issue, we assessed freezing responses and Fos protein expression in subregions of the rhinal cortex and ventral hippocampus of rats following exposure to a context, light or tone previously paired with footshock (Experiment 1). A comparable degree of freezing was observed in the three types of conditioned fear, but with distinct patterns of Fos distribution. The groups exposed to cued fear conditioning did not show changes in Fos expression, whereas the group subjected to contextual fear conditioning showed selective activation of the ectorhinal (Ect), perirhinal (Per), and entorhinal (Ent) cortices, with no changes in the ventral hippocampus. We then examined the effects of the benzodiazepine midazolam injected bilaterally into these three rhinal subregions in the expression of contextual fear conditioning (Experiment 2). Midazolam administration into the Ect, Per, and Ent reduced freezing responses. These findings suggest that contextual and explicit stimuli endowed with aversive properties through conditioning recruit distinct brain areas, and the rhinal cortex appears to be critical for storing context-, but not explicit cue-footshock, associations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We compared the responsiveness of the LGN and the early retinotopic cortical areas to stimulation of the two cone-opponent systems (red - green and blue - yellow) and the achromatic system. This was done at two contrast levels to control for any effect of contrast. MR images were acquired on seven subjects with a 4T Bruker MedSpec scanner. The early visual cortical areas were localised by phase encoded retinotopic mapping with a volumetric analysis (Dumoulin et al, 2003 NeuroImage 18 576 - 587). We initially located the LGN in four subjects by using flickering stimuli in a separate scanning session, but subsequently identified it using the experimental stimuli. Experimental stimuli were sine-wave counterphasing rings (2 Hz, 0.5 cycle deg-1), cardinal for the selective activation of the L/M cone-opponent (RG), S cone-opponent (BY), and achromatic (Ach) systems. A region of interest analysis was performed. When presented at equivalent absolute contrasts (cone contrast = 5% - 6%), the BOLD response of the LGN is strongest to isoluminant red - green stimuli and weakest to blue - yellow stimuli, with the achromatic response falling in between. Area V1, on the other hand, responds best to both chromatic stimuli, with the achromatic response falling below. The key change from the LGN to V1 is a dramatic boost in the relative blue - yellow response, which occurred at both contrast levels used. This greatly enhanced cortical response to blue - yellow relative to the red - green and achromatic responses may be due to an increase in cell number and/or cell response between the LGN and V1. We speculate that the effect might reflect the operation of contrast constancy across colour mechanisms at the cortical level.
Resumo:
Previous functional magnetic resonance imaging (fMRI) studies examined neural activity responses to emotive stimuli in healthy individuals after acute/subacute administration of antidepressants. We now report the effects of repeated use of the antidepressant clomipramine on fMRI data acquired during presentation of emotion-provoking and neutral stimuli on healthy volunteers. A total of 12 volunteers were evaluated with fMRI after receiving low doses of clomipramine for 4 weeks and again after 4 weeks of washout. Fear-, happiness-, anger-provoking and neutral pictures from the International Affective Picture System (IAPS) were used. Data analysis was performed with statistical parametric mapping (P < 0.05). Paired t-test comparisons for each condition between medicated and unmedicated states showed, to negative valence paradigms, decrease in brain activity in the amygdala when participants were medicated. We also demonstrated, across both positive and negative valence paradigms, consistent decreases in brain activity in the medicated state in the anterior cingulate gyrus and insula. This is the first report of modulatory effects of repeated antidepressant use on the central representation of somatic states in response to emotions of both negative and positive valences in healthy individuals. Also, our results corroborate findings of antidepressant-induced temporolimbic activity changes to emotion-provoking stimuli obtained in studies of subjects treated acutely with such agents.
Resumo:
To examine abnormal patterns of frontal cortical-subcortical activity in response to emotional stimuli in euthymic individuals with bipolar disorder type I in order to identify trait-like, pathophysiologic mechanisms of the disorder. We examined potential confounding effects of total psychotropic medication load and illness variables upon neural abnormalities. We analyzed neural activity in 19 euthymic bipolar and 24 healthy individuals to mild and intense happy, fearful and neutral faces. Relative to healthy individuals, bipolar subjects had significantly increased left striatal activity in response to mild happy faces (p < 0.05, corrected), decreased right dorsolateral prefrontal cortical (DLPFC) activity in response to neutral, mild and intense happy faces, and decreased left DLPFC activity in response to neutral, mild and intense fearful faces (p < 0.05, corrected). Bipolar and healthy individuals did not differ in amygdala activity in response to either emotion. In bipolar individuals, there was no significant association between medication load and abnormal activity in these regions, but a negative relationship between age of illness onset and amygdala activity in response to mild fearful faces (p = 0.007). Relative to those without comorbidities, bipolar individuals with comorbidities showed a trend increase in left striatal activity in response to mild happy faces. Abnormally increased striatal activity in response to potentially rewarding stimuli and decreased DLPFC activity in response to other emotionally salient stimuli may underlie mood instabilities in euthymic bipolar individuals, and are more apparent in those with comorbid diagnoses. No relationship between medication load and abnormal neural activity in bipolar individuals suggests that our findings may reflect pathophysiologic mechanisms of the illness rather than medication confounds. Future studies should examine whether this pattern of abnormal neural activity could distinguish bipolar from unipolar depression.
Resumo:
In the present study, the participation of the Na(v)1.8 sodium channel was investigated in the development of the peripheral pro-nociceptive state induced by daily intraplantar injections of PGE(2) in rats and its regulation in vivo by protein kinase A (PKA) and protein kinase C epsilon (PKC epsilon) as well. In the prostaglandin E(2) (PGE(2))-induced persistent hypernociception, the Na(v)1.8 mRNA in the dorsal root ganglia (DRG) was up-regulated. The local treatment with dipyrone abolished this persistent hypernociception but did not alter the Na(v)1.8 mRNA level in the DRG. Daily intrathecal administrations of antisense Na(v)1.8 decreased the Na(v)1.8 mRNA in the DRG and reduced ongoing persistent hypernociception. once the persistent hypernociception had been abolished by dipyrone, but not by Na(v)1.8 antisense treatment, a small dose of PGE(2) restored the hypernociceptive plateau. These data show that, after a period of recurring inflammatory stimuli, an intense and prolonged nociceptive response is elicited by a minimum inflammatory stimulus and that this pro-nociceptive state depends on Na(v)1.8 mRNA up-regulation in the DRG. in addition, during the persistent hypernociceptive state, the PKA and PKC epsilon expression and activity in the DRG are up-regulated and the administration of the PKA and PKC epsilon inhibitors reduce the hypernociception as well as the Na(v)1.8 mRNA level. In the present study, we demonstrated that the functional regulation of the Na(v)1.8 mRNA by PKA and PKC epsilon in the primary sensory neuron is important for the development of the peripheral pro-nociceptive state induced by repetitive inflammatory stimuli and for the maintenance of the behavioral persistent hypernociception. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Yogi A, Callera GE, Tostes R, Touyz RM. Bradykinin regulates calpain and proinflammatory signaling through TRPM7-sensitive pathways in vascular smooth muscle cells. Am J Physiol Regul Integr Comp Physiol 296: R201-R207, 2009. First published September 17, 2008; doi: 10.1152/ajpregu.90602.2008.-Transient receptor potential melastatin-7 (TRPM7) channels have recently been identified to be regulated by vasoactive agents acting through G protein-coupled receptors in vascular smooth muscle cells (VSMC). However, downstream targets and functional responses remain unclear. We investigated the subcellular localization of TRPM7 in VSMCs and questioned the role of TRPM7 in proinflammatory signaling by bradykinin. VSMCs from Wistar-Kyoto rats were studied. Cell fractionation by sucrose gradient and differential centrifugation demonstrated that in bradykinin-stimulated cells, TRPM7 localized in fractions corresponding to caveolae. Immunofluorescence confocal microscopy revealed that TRPM7 distributes along the cell membrane, that it has a reticular-type intracellular distribution, and that it colocalizes with flotillin-2, a marker of lipid rafts. Bradykinin increased expression of calpain, a TRPM7 target, and stimulated its cytosol/membrane translocation, an effect blocked by 2-APB (TRPM7 inhibitor) and U-73122 (phospholipase C inhibitor), but not by chelerythrine (PKC inhibitor). Expression of proinflammatory mediators VCAM-1 and cyclooxygenase-2 (COX-2) was time-dependently increased by bradykinin. This effect was blocked by Hoe-140 (B(2) receptor blocker) and 2-APB. Our data demonstrate that in bradykinin-stimulated VSMCs: 1) TRPM7 is upregulated, 2) TRPM7 associates with cholesterol-rich microdomains, and 3) calpain and proinflammatory mediators VCAM-1 and COX2 are regulated, in part, via TRPM7- and phospholipase C-dependent pathways through B2 receptors. These findings identify a novel signaling pathway for bradykinin, which involves TRPM7. Such phenomena may play a role in bradykinin/B(2) receptor-mediated inflammatory responses in vascular cells.
Resumo:
Aims We demonstrated c-Src activation as a novel non-genomic signalling pathway for aldosterone in vascular smooth muscle cells (VSMCs). Here, we investigated molecular mechanisms and biological responses of this phenomenon, focusing on the role of lipid rafts/caveolae and platelet-derived growth factor receptor (PDGFR) in c-Src-regulated proinflammatory responses by aldosterone. Methods and results Studies were performed in cultured VSMCs from Wistar-Kyoto (WKY) rats and caveolin-1 knockout (Cav 1(-/-)) and wild-type mice. Aldosterone stimulation increased c-Src phosphorylation and trafficking to lipid rafts/caveolae. Cholesterol depletion with methyl-beta-cyclodextrin abrogated aldosterone-induced phosphorylation of c-Src and its target, Pyk2. Aldosterone effects were recovered by cholesterol reload. Aldosterone-induced c-Src and cortactin phosphorylation was reduced in caveolin-1-silenced and Cav 1(-/-) VSMCs. PDGFR is phosphorylated by aldosterone within cholesterol-rich fractions of VSMCs. AG1296, a PDGFR inhibitor, prevented c-Src phosphorylation and translocation to cholesterol-rich fractions. Aldosterone induced an increase in adhesion molecule protein content and promoted monocyte adhesion to VSMCs, responses that were inhibited an by cholesterol depletion, caveolin-1 deficiency, AG1296 and PP2, a c-Src inhibitor. Mineralocorticoid receptor (MR) content in flotillin-2-rich fractions and co-immunoprecipitation with c-Src and PDGFR increased upon aldosterone stimulation, indicating MR-lipid raft/signalling association. Conclusion We demonstrate that aldosterone-mediated c-Src trafficking/activation and proinflammatory signalling involve lipid rafts/caveolae via PDGFR.
Resumo:
Background Evaluate the production of TNF and IL-6 in the supernatant of peripheral blood mononuclear cell (PBMC) cultures of patients with supraglottic laryngeal cancer before and after surgical treatment. Materials and methods Adherent cell cultures were stimulated with LPS and BCG. Fourteen patients with advanced supraglottic laryngeal cancer were studied. Cytokine concentration was determined by ELISA in supernatants of mononuclear cell cultures. Results In non-stimulated cultures, lower TNF cytokine levels were detected during the late postoperative (LP) period compared to control (P = 0.02). LP TNF and IL-6 levels were high in cultures stimulated with LPS compared with the preoperative period (PREOP) (P = 0.007; P = 0.008, respectively). Stimulation with BCG led to increased levels of TNF and IL-6 during the LP period compared to control (P = 0.001; P = 0.04, respectively). Conclusions BCG is able to modulate the immune response of patients with advanced supraglottic laryngeal cancer in vitro, increasing the secretion of TNF and IL-6 by macrophages during the postoperative period.
Resumo:
The purpose of this study was to assess the behavioral and physiological reactivity of preterm neonates during different phases of a blood collection procedure involving arterial puncture. The sample consisted of 43 preterm and very low birth weight neonates with a postnatal age of 1 to 21 days who were hospitalized in the Neonatal Intensive Care Unit. The neonates were evaluated during the whole blood collection procedure. The assessment was divided into five consecutive phases: Baseline (BL); Antispsis (A), covering the period of handling of the neonate for antisepsis prior to puncture; Puncture (P): Recovery-Dressing (RD), covering the period of handling of the neonate for dressing until positioning for rest in the isolette; and Recovery-Resting (RR). Facial activity was videotaped and analyzed using the National Facial Coding System (NFCS). The sleep-wake state and heart rate were registered at the bedside. There was a significant increases in NFCS score and heart rate, and more active behavior during phases A, P, and RD relative to BL. Regarding the tactile stimulation of the infant in pre-puncture (A) and post-puncture (RD), it was observed increased NFCS score, heart rate, and active behavior in comparison to the BL an BR phases. There was evidence of distress responses immediately before and after a painful event, quite apart form the pain reaction to the puncture procedure. Published by Elsevier B.V. on behalf of International Association for the Study of Pain.
Resumo:
OBJECTIVE: To establish body mass index (BMI) norms for standard figural stimuli using a large Caucasian population-based sample. In addition, we sought to determine the effectiveness of the figural stimuli to identify individuals as obese or thin. DESIGN: All Caucasian twins born in Virginia between 1915 and 1971 were identified by public birth record. In addition, 3347 individual twins responded to a letter published in the newsletter of the American Association of Retired Persons (AARP). All adult twins (aged 18 and over) from both of these sources and their family members were mailed a 16 page 'Health and Lifestyle' questionnaire. SUBJECTS: BMI and silhouette data were available on 16 728 females and 11 366 males ranging in age from 18- 100. MEASUREMENTS: Self-report information on height-weight, current body size, desired body size and a discrepancy score using standard figural stimuli. RESULTS: Gender- and age-specific norms are presented linking BMI to each of the figural stimuli. Additional norms for desired body size and discrepancy scores are also presented. Receiver operating curves (ROC) indicate that the figural stimuli are effective in classifying individuals as obese or thin. CONCLUSIONS: With the establishment of these norms, the silhouettes used in standard body image assessment can now be linked to BMI. Differences were observed between women and men in terms of desired body size and discrepancy scores, with women preferring smaller sizes. The figural stimuli are a robust technique for classifying individuals as obese or thin.
Resumo:
The present research investigated blink startle modulation during the anticipation of pleasant, unpleasant, or neutral pictures. In Experiment 1 (N = 18), participants were presented with three different tone-picture pairings. Tones differed in pitch and were followed by pleasant, neutral or unpleasant pictures. Acoustic blink reflexes were elicited during some tones and during stimulus free intervals. Blink facilitation during tones that preceded pleasant and unpleasant pictures was larger than during the tone that preceded neutral pictures. Experiment 2 (N = 10) assessed whether this difference was due to a difference in the presentation frequency of the three conditions. No difference in blink facilitation between the conditions was found when pictures of flowers and mushrooms replaced the pleasant and unpleasant pictures, indicating that picture content was instrumental in causing the differential blink facilitation in Experiment 1. The results from Experiment 1 seem to indicate that startle modulation during the anticipation of pictorial material reflects the interest in or the arousal associated with the pictures rather than picture valence.
Resumo:
We investigated the effects of conditional stimulus fear-relevance and of instructed extinction on human Pavlovian conditioning as indexed by electrodermal responses and verbal ratings of conditional stimulus unpleasantness. Half of the participants (n = 64) were trained with pictures of snakes and spiders (fear-relevant) as conditional stimuli, whereas the others were trained with pictures of flowers and mushrooms (fear-irrelevant) in a differential aversive Pavlovian conditioning procedure. Half of the participants in each group were instructed after the completion of acquisition that no more unconditional stimuli were to be presented. Extinction of differential electrodermal responses required more trials after training with fear-relevant pictures. Moreover, there was some evidence that verbal instructions did not affect extinction of second interval electrodermal responses to fear-relevant pictures. However, neither fear-relevance nor instructions affected the changes in rated conditional stimulus pleasantness. This dissociation across measures is interpreted as reflecting renewal of Pavlovian learning.
Resumo:
The present series of experiments was designed to assess whether rule-based accounts of Pavlovian learning can account for cue competition effects observed after elemental training. All experiments involved initial differential conditioning training with A-US and B alone presentations. Miscuing refers to the fact that responding to A is impaired after one B-US presentation whereas interference is the impairment of responding to A after presentation of C-US pairings. Omission refers to the effects on B of A alone presentations. Experiments 1-2a provided clear evidence for miscuing whereas interference was not found after 1, 5 or 10 C-US pairings. Moreover, Experiments 3 and 3a found only weak evidence for interference in an A-US, B I C-US, D I A design used previously to show the effect. Experiments 4 and 5 failed to find any effect of US omission after one or five omission trials. The present results indicate that miscuing is more robust than is the interference effect. Moreover, the asymmetrical effects of US miscuing and US omission are difficult to accommodate within rule-based accounts of Pavlovian conditioning. (C) 2002 Elsevier Science (USA). All rights reserved.