864 resultados para Production Inventory Model with Switching Time


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltage source inverters are an integral part of renewable power sources and smart grid systems. Computationally efficient and fairly accurate models for the voltage source inverter are required to carry out extensive simulation studies on complex power networks. Accuracy requires that the effect of dead-time be incorporated in the inverter model. The dead-time is essentially a short delay introduced between the gating pulses to the complementary switches in an inverter leg for the safety of power devices. As the modern voltage source inverters switch at fairly high frequencies, the dead-time significantly influences the output fundamental voltage. Dead-time also causes low-frequency harmonic distortion and is hence important from a power quality perspective. This paper studies the dead-time effect in a synchronous dq reference frame, since dynamic studies and controller design are typically carried out in this frame of reference. For the sake of computational efficiency, average models are derived, incorporating the dead-time effect, in both RYB and dq reference frames. The average models are shown to consume less computation time than their corresponding switching models, the accuracies of the models being comparable. The proposed average synchronous reference frame model, including effect of dead-time, is validated through experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grating Compression Transform (GCT) is a two-dimensional analysis of speech signal which has been shown to be effective in multi-pitch tracking in speech mixtures. Multi-pitch tracking methods using GCT apply Kalman filter framework to obtain pitch tracks which requires training of the filter parameters using true pitch tracks. We propose an unsupervised method for obtaining multiple pitch tracks. In the proposed method, multiple pitch tracks are modeled using time-varying means of a Gaussian mixture model (GMM), referred to as TVGMM. The TVGMM parameters are estimated using multiple pitch values at each frame in a given utterance obtained from different patches of the spectrogram using GCT. We evaluate the performance of the proposed method on all voiced speech mixtures as well as random speech mixtures having well separated and close pitch tracks. TVGMM achieves multi-pitch tracking with 51% and 53% multi-pitch estimates having error <= 20% for random mixtures and all-voiced mixtures respectively. TVGMM also results in lower root mean squared error in pitch track estimation compared to that by Kalman filtering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In everyday life different flows of customers to avail some service facility or other at some service station are experienced. In some of these situations, congestion of items arriving for service, because an item cannot be serviced Immediately on arrival, is unavoidable. A queuing system can be described as customers arriving for service, waiting for service if it is not immediate, and if having waited for service, leaving the system after being served. Examples Include shoppers waiting in front of checkout stands in a supermarket, Programs waiting to be processed by a digital computer, ships in the harbor Waiting to be unloaded, persons waiting at railway booking office etc. A queuing system is specified completely by the following characteristics: input or arrival pattern, service pattern, number of service channels, System capacity, queue discipline and number of service stages. The ultimate objective of solving queuing models is to determine the characteristics that measure the performance of the system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Em modelos de competição de preços, somente um custo de procura positivo por parte do consumidor não gera equilíbrio com dispersão de preços. Já modelos dinâmicos de switching cost consistentemente geram este fenômeno bastante documentado para preços no varejo. Embora ambas as literaturas sejam vastas, poucos modelos tentaram combinar as duas fricções em um só modelo. Este trabalho apresenta um modelo dinâmico de competição de preços em que consumidores idênticos enfrentam custos de procura e de switching. O equilíbrio gera dispersão nos preços. Ainda, como os consumidores são obrigados a se comprometer com uma amostra fixa de firmas antes dos preços serem definidos, somente dois preços serão considerados antes de cada compra. Este resultado independe do tamanho do custo de procura individual do consumidor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esse artigo apresenta um modelo dinâmico de competição em precos que incorpora tanto custos de procura quanto custos de switching e onde que as decisões do consumidor e das firmas são simultâneas. Dadas as hipóteses feitas n ós veremos que este modelo possui equilí brio. As principais propriedades do equil íbrio deste modelo são: Se os custos de procura forem baixos o suficiente, em equilí brio o consumidor vai procurar todas as firmas no mercado enquanto que o aumento dos custos de procura vai reduzir a propor cão de firmas que o consumidor busca. Um resultado contraintuitivo e que os pre cos esperados pagos pelo consumidor normalmente decresce em nossas computa cões numéricas do equil íbrio quando os custos de procura aumentam. Enquanto que aumentar os custos de switching tamb ém vai produzir o resultado contraituitivo que as firmas unmatched vão diminuir suas ofertas de modo a atrair o consumidor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last decades, the analysis of the transmissions of international nancial events has become the subject of many academic studies focused on multivariate volatility models volatility. The goal of this study is to evaluate the nancial contagion between stock market returns. The econometric approach employed was originally presented by Pelletier (2006), named Regime Switching Dynamic Correlation (RSDC). This methodology involves the combination of Constant Conditional Correlation Model (CCC) proposed by Bollerslev (1990) with Markov Regime Switching Model suggested by Hamilton and Susmel (1994). A modi cation was made in the original RSDC model, the introduction of the GJR-GARCH model formulated in Glosten, Jagannathan e Runkle (1993), on the equation of the conditional univariate variances to allow asymmetric e ects in volatility be captured. The database was built with the series of daily closing stock market indices in the United States (SP500), United Kingdom (FTSE100), Brazil (IBOVESPA) and South Korea (KOSPI) for the period from 02/01/2003 to 09/20/2012. Throughout the work the methodology was compared with others most widespread in the literature, and the model RSDC with two regimes was de ned as the most appropriate for the selected sample. The set of results provide evidence for the existence of nancial contagion between markets of the four countries considering the de nition of nancial contagion from the World Bank called very restrictive. Such a conclusion should be evaluated carefully considering the wide diversity of de nitions of contagion in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many recent survival studies propose modeling data with a cure fraction, i.e., data in which part of the population is not susceptible to the event of interest. This event may occur more than once for the same individual (recurrent event). We then have a scenario of recurrent event data in the presence of a cure fraction, which may appear in various areas such as oncology, finance, industries, among others. This paper proposes a multiple time scale survival model to analyze recurrent events using a cure fraction. The objective is analyzing the efficiency of certain interventions so that the studied event will not happen again in terms of covariates and censoring. All estimates were obtained using a sampling-based approach, which allows information to be input beforehand with lower computational effort. Simulations were done based on a clinical scenario in order to observe some frequentist properties of the estimation procedure in the presence of small and moderate sample sizes. An application of a well-known set of real mammary tumor data is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model predictive control (MPC) applications in the process industry usually deal with process systems that show time delays (dead times) between the system inputs and outputs. Also, in many industrial applications of MPC, integrating outputs resulting from liquid level control or recycle streams need to be considered as controlled outputs. Conventional MPC packages can be applied to time-delay systems but stability of the closed loop system will depend on the tuning parameters of the controller and cannot be guaranteed even in the nominal case. In this work, a state space model based on the analytical step response model is extended to the case of integrating time systems with time delays. This model is applied to the development of two versions of a nominally stable MPC, which is designed to the practical scenario in which one has targets for some of the inputs and/or outputs that may be unreachable and zone control (or interval tracking) for the remaining outputs. The controller is tested through simulation of a multivariable industrial reactor system. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work we perform an econometric analysis of the Tribal art market. To this aim, we use a unique and original database that includes information on Tribal art market auctions worldwide from 1998 to 2011. In Literature, art prices are modelled through the hedonic regression model, a classic fixed-effect model. The main drawback of the hedonic approach is the large number of parameters, since, in general, art data include many categorical variables. In this work, we propose a multilevel model for the analysis of Tribal art prices that takes into account the influence of time on artwork prices. In fact, it is natural to assume that time exerts an influence over the price dynamics in various ways. Nevertheless, since the set of objects change at every auction date, we do not have repeated measurements of the same items over time. Hence, the dataset does not constitute a proper panel; rather, it has a two-level structure in that items, level-1 units, are grouped in time points, level-2 units. The main theoretical contribution is the extension of classical multilevel models to cope with the case described above. In particular, we introduce a model with time dependent random effects at the second level. We propose a novel specification of the model, derive the maximum likelihood estimators and implement them through the E-M algorithm. We test the finite sample properties of the estimators and the validity of the own-written R-code by means of a simulation study. Finally, we show that the new model improves considerably the fit of the Tribal art data with respect to both the hedonic regression model and the classic multilevel model.