912 resultados para Product Line Development


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We model monopolistic competition in product lines, assuming that consumer heterogeneity is the result rather than the cause of product variety. Our results contradict some well-known policy implications yielded by the standard monopolistic competition framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caenorhabditis elegans is an ideal organism for the study of the molecular basis of fundamental biological processes such as germ-line development, especially because of availability of the whole genome sequence and applicability of the RNA interference (RNAi) technique. To identify genes involved in germ-line development, we produced subtracted cDNA pools either enriched for or deprived of the cDNAs from germ-line tissues. We then performed differential hybridization on the high-density cDNA grid, on which about 7,600 nonoverlapping expressed sequence tag (EST) clones were spotted, to identify a set of genes specifically expressed in the germ line. One hundred and sixty-eight clones were then tested with the RNAi technique. Of these, 15 clones showed sterility with a variety of defects in germ-line development. Seven of them led to the production of unfertilized eggs, because of defects in spermatogenesis (4 clones), or defects in the oocytes (3 clones). The other 8 clones led to failure of oogenesis. These failures were caused by germ-line proliferation defect (Glp phenotype), meiotic arrest, and defects in sperm–oocyte switch (Mog phenotype) among others. These results demonstrate the efficacy of the screening strategy using the EST library combined with the RNAi technique in C. elegans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic software product lines extend the concept of conventional SPLs by enabling software-variant generation at runtime. Recent studies yield insights into the current state of the DSPL field, research trends, and major gaps to address.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of our work is to present solutions and a methodical support for automated techniques and procedures in domain engineering, in particular for variability modeling. Our approach is based upon Semantic Modeling concepts, for which semantic description, representation patterns and inference mechanisms are defined. Thus, model-driven techniques enriched with semantics will allow flexibility and variability in representation means, reasoning power and the required analysis depth for the identification, interpretation and adaptation of artifact properties and qualities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variability management is one of the major challenges in software product line adoption, since it needs to be efficiently managed at various levels of the software product line development process (e.g., requirement analysis, design, implementation, etc.). One of the main challenges within variability management is the handling and effective visualization of large-scale (industry-size) models, which in many projects, can reach the order of thousands, along with the dependency relationships that exist among them. These have raised many concerns regarding the scalability of current variability management tools and techniques and their lack of industrial adoption. To address the scalability issues, this work employed a combination of quantitative and qualitative research methods to identify the reasons behind the limited scalability of existing variability management tools and techniques. In addition to producing a comprehensive catalogue of existing tools, the outcome form this stage helped understand the major limitations of existing tools. Based on the findings, a novel approach was created for managing variability that employed two main principles for supporting scalability. First, the separation-of-concerns principle was employed by creating multiple views of variability models to alleviate information overload. Second, hyperbolic trees were used to visualise models (compared to Euclidian space trees traditionally used). The result was an approach that can represent models encompassing hundreds of variability points and complex relationships. These concepts were demonstrated by implementing them in an existing variability management tool and using it to model a real-life product line with over a thousand variability points. Finally, in order to assess the work, an evaluation framework was designed based on various established usability assessment best practices and standards. The framework was then used with several case studies to benchmark the performance of this work against other existing tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model Driven based approach for Service Evolution in Clouds will mainly focus on the reusable evolution patterns' advantage to solve evolution problems. During the process, evolution pattern will be driven by MDA models to pattern aspects. Weaving the aspects into service based process by using Aspect-Oriented extended BPEL engine at runtime will be the dynamic feature of the evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tämä diplomityö toteutettiin Sammet Dampers Oy:ltä saatuna toimeksiantona. Yritys haluaa yhä parempia tuloksia tuoteryhmien kehitysprojekteista, jolloin se asettaa vaatimuksia kehitysprojekteissa käytettävälle kehitysprosessille. Yrityksen täytyy optimoida ja systematisoida käytettävää menetelmää, jotta näihin parempiin tuloksiin voidaan päästä. Työn ensimmäisenä tavoitteena on optimoida yrityksen käytössä oleva tuoteryhmien kehitysprojekteissa käytettävä prosessimalli. Tavoitteen mukaisesti työssä luodaan uusi optimoitu tuoteryhmien kehitysprosessimalli, joka vastaa yrityksen tarpeisiin. Tämä uusi malli kirjataan osaksi yrityksen toiminnanohjausjärjestelmää. Työn toisena tavoitteena on käyttää uutta optimoitua prosessimallia kellopeltien tuoteryhmän kehitysprojektissa. Tätä kehitysprojektia käytetään samalla uuden prosessimallin sisäänajamiseen osaksi yrityksen toimintoja.Tämän diplomityön puitteissa kellopeltien kehitysprojektista käydään läpi kehitysprojektin ensimmäinen osio eli vaatimustenmäärittelyprosessi ja esitellään sen tuloksena syntynyt toteutussuunnitelma. Työn tuloksena syntyneen uuden tuoteryhmien kehitysprojektin prosessimallin avulla voidaan saavuttaa merkittäviä parannuksia tarkasteltaessa kehitysprojektin tuloksia ajankäytön, laadun ja kustannusten suhteen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-quality software, delivered on time and budget, constitutes a critical part of most products and services in modern society. Our government has invested billions of dollars to develop software assets, often to redevelop the same capability many times. Recognizing the waste involved in redeveloping these assets, in 1992 the Department of Defense issued the Software Reuse Initiative. The vision of the Software Reuse Initiative was "To drive the DoD software community from its current "re-invent the software" cycle to a process-driven, domain-specific, architecture-centric, library-based way of constructing software.'' Twenty years after issuing this initiative, there is evidence of this vision beginning to be realized in nonembedded systems. However, virtually every large embedded system undertaken has incurred large cost and schedule overruns. Investigations into the root cause of these overruns implicates reuse. Why are we seeing improvements in the outcomes of these large scale nonembedded systems and worse outcomes in embedded systems? This question is the foundation for this research. The experiences of the Aerospace industry have led to a number of questions about reuse and how the industry is employing reuse in embedded systems. For example, does reuse in embedded systems yield the same outcomes as in nonembedded systems? Are the outcomes positive? If the outcomes are different, it may indicate that embedded systems should not use data from nonembedded systems for estimation. Are embedded systems using the same development approaches as nonembedded systems? Does the development approach make a difference? If embedded systems develop software differently from nonembedded systems, it may mean that the same processes do not apply to both types of systems. What about the reuse of different artifacts? Perhaps there are certain artifacts that, when reused, contribute more or are more difficult to use in embedded systems. Finally, what are the success factors and obstacles to reuse? Are they the same in embedded systems as in nonembedded systems? The research in this dissertation is comprised of a series of empirical studies using professionals in the aerospace and defense industry as its subjects. The main focus has been to investigate the reuse practices of embedded systems professionals and nonembedded systems professionals and compare the methods and artifacts used against the outcomes. The research has followed a combined qualitative and quantitative design approach. The qualitative data were collected by surveying software and systems engineers, interviewing senior developers, and reading numerous documents and other studies. Quantitative data were derived from converting survey and interview respondents' answers into coding that could be counted and measured. From the search of existing empirical literature, we learned that reuse in embedded systems are in fact significantly different from nonembedded systems, particularly in effort in model based development approach and quality where the development approach was not specified. The questionnaire showed differences in the development approach used in embedded projects from nonembedded projects, in particular, embedded systems were significantly more likely to use a heritage/legacy development approach. There was also a difference in the artifacts used, with embedded systems more likely to reuse hardware, test products, and test clusters. Nearly all the projects reported using code, but the questionnaire showed that the reuse of code brought mixed results. One of the differences expressed by the respondents to the questionnaire was the difficulty in reuse of code for embedded systems when the platform changed. The semistructured interviews were performed to tell us why the phenomena in the review of literature and the questionnaire were observed. We asked respected industry professionals, such as senior fellows, fellows and distinguished members of technical staff, about their experiences with reuse. We learned that many embedded systems used heritage/legacy development approaches because their systems had been around for many years, before models and modeling tools became available. We learned that reuse of code is beneficial primarily when the code does not require modification, but, especially in embedded systems, once it has to be changed, reuse of code yields few benefits. Finally, while platform independence is a goal for many in nonembedded systems, it is certainly not a goal for the embedded systems professionals and in many cases it is a detriment. However, both embedded and nonembedded systems professionals endorsed the idea of platform standardization. Finally, we conclude that while reuse in embedded systems and nonembedded systems is different today, they are converging. As heritage embedded systems are phased out, models become more robust and platforms are standardized, reuse in embedded systems will become more like nonembedded systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Informática.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Software Product Line (SPL) engineering aims at achieving efficient development of software products in a specific domain. New products are obtained via a process which entails creating a new configuration specifying the desired product’s features. This configuration must necessarily conform to a variability model, that describes the scope of the SPL, or else it is not viable. To ensure this, configuration tools are used that do not allow invalid configurations to be expressed. A different concern, however, is making sure that a product addresses the stakeholders’ needs as best as possible. The stakeholders may not be experts on the domain, so they may have unrealistic expectations. Also, the scope of the SPL is determined not only by the domain but also by limitations of the development platforms. It is therefore possible that the desired set of features goes beyond what is possible to currently create with the SPL. This means that configuration tools should provide support not only for creating valid products, but also for improving satisfaction of user concerns. We address this goal by providing a user-centric configuration process that offers suggestions during the configuration process, based on the use of soft constraints, and identifying and explaining potential conflicts that may arise. Suggestions help mitigating stakeholder uncertainty and poor domain knowledge, by helping them address well known and desirable domain-related concerns. On the other hand, automated conflict identification and explanation helps the stakeholders to understand the trade-offs required for realizing their vision, allowing informed resolution of conflicts. Additionally, we propose a prototype-based approach to configuration, that addresses the order-dependency issues by allowing the complete (or partial) specification of the features in a single step. A subsequent resolution process will then identify possible repairs, or trade-offs, that may be required for viabilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this thesis is to develop an environment or network that enables effective collaborative product structure management among stakeholders in each unit, throughout the entire product lifecycle and product data management. This thesis uses framework models as an approach to the problem. Framework model methods for development of collaborative product structure management are proposed in this study, there are three unique models depicted to support collaborative product structure management: organization model, process model and product model. In the organization model, the formation of product data management system (eDSTAT) key user network is specified. In the process model, development is based on the case company’s product development matrix. In the product model framework, product model management, product knowledge management and design knowledge management are defined as development tools and collaboration is based on web-based product structure management. Collaborative management is executed using all these approaches. A case study from an actual project at the case company is presented as an implementation; this is to verify the models’ applicability. A computer assisted design tool and the web-based product structure manager, have been used as tools of this collaboration with the support of the key user. The current PDM system, eDSTAT, is used as a piloting case for key user role. The result of this development is that the role of key user as a collaboration channel is defined and established. The key user is able to provide one on one support for the elevator projects. Also the management activities are improved through the application of process workflow by following criteria for each project milestone. The development shows effectiveness of product structure management in product lifecycle, improved production process by eliminating barriers (e.g. improvement of two-way communication) during design phase and production phase. The key user role is applicable on a global scale in the company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A company’s competence to manage its product portfolio complexity is becoming critically important in the rapidly changing business environment. The continuous evolvement of customer needs, the competitive market environment and internal product development lead to increasing complexity in product portfolios. The companies that manage the complexity in product development are more profitable in the long run. The complexity derives from product development and management processes where the new product variant development is not managed efficiently. Complexity is managed with modularization which is a method that divides the product structure into modules. In modularization, it is essential to take into account the trade-off between the perceived customer value and the module or component commonality across the products. Another goal is to enable the product configuration to be more flexible. The benefits are achieved through optimizing complexity in module offering and deriving the new product variants more flexibly and accurately. The developed modularization process includes the process steps for preparation, mapping the current situation, the creation of a modular strategy and implementing the strategy. Also the organization and support systems have to be adapted to follow-up targets and to execute modularization in practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Software product line (SPL) engineering offers several advantages in the development of families of software products such as reduced costs, high quality and a short time to market. A software product line is a set of software intensive systems, each of which shares a common core set of functionalities, but also differs from the other products through customization tailored to fit the needs of individual groups of customers. The differences between products within the family are well-understood and organized into a feature model that represents the variability of the SPL. Products can then be built by generating and composing features described in the feature model. Testing of software product lines has become a bottleneck in the SPL development lifecycle, since many of the techniques used in their testing have been borrowed from traditional software testing and do not directly take advantage of the similarities between products. This limits the overall gains that can be achieved in SPL engineering. Recent work proposed by both industry and the research community for improving SPL testing has begun to consider this problem, but there is still a need for better testing techniques that are tailored to SPL development. In this thesis, I make two primary contributions to software product line testing. First I propose a new definition for testability of SPLs that is based on the ability to re-use test cases between products without a loss of fault detection effectiveness. I build on this idea to identify elements of the feature model that contribute positively and/or negatively towards SPL testability. Second, I provide a graph based testing approach called the FIG Basis Path method that selects products and features for testing based on a feature dependency graph. This method should increase our ability to re-use results of test cases across successive products in the family and reduce testing effort. I report the results of a case study involving several non-trivial SPLs and show that for these objects, the FIG Basis Path method is as effective as testing all products, but requires us to test no more than 24% of the products in the SPL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supply chain starts with a demand arisen and ends with material transport and delivery at its final destination. With this in mind, most of manufacturing, processors or distribution companies of consumer goods, spare parts and components for production, processing and finished goods, within national or international markets, may not have information and control over its supply chain performance. This article presents concept and logistics models evolution, purchase order and international supplier management, control tower and its logistics information systems. This also presents a real process implementation for a global high tech manufacturer company.