937 resultados para Probability densities


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this letter, we investigate the distribution of the phase component of the complex received signal observed in practical experiments using body area networks. Two phase distributions, the recently proposed kappa-mu and eta-mu probability densities, which together encompass the most widely used fading models, namely Semi-Gaussian, Rayleigh, Hoyt, Rice, and Nakagami-m, have been compared with measurement data. The kappa-mu distribution has been found to provide the best fit over a range of on-body links, while the user was mobile. The experiments were carried out in two dissimilar indoor environments at opposite ends of the multipath spectrum. It has also been found that the uniform phase distribution has not arisen in anyone of the experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we consider the problem of tracking similar objects. We show how a mean field approach can be used to deal with interacting targets and we compare it with Markov Chain Monte Carlo (MCMC). Two mean field implementations are presented. The first one is more general and uses particle filtering. We discuss some simplifications of the base algorithm that reduce the computation time. The second one is based on suitable Gaussian approximations of probability densities that lead to a set of self-consistent equations for the means and covariances. These equations give the Kalman solution if there is no interaction. Experiments have been performed on two kinds of sequences. The first kind is composed of a single long sequence of twenty roaming ants and was previously analysed using MCMC. In this case, our mean field algorithms obtain substantially better results. The second kind corresponds to selected sequences of a football match in which the interaction avoids tracker coalescence in situations where independent trackers fail.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A truly variance-minimizing filter is introduced and its per for mance is demonstrated with the Korteweg– DeV ries (KdV) equation and with a multilayer quasigeostrophic model of the ocean area around South Africa. It is recalled that Kalman-like filters are not variance minimizing for nonlinear model dynamics and that four - dimensional variational data assimilation (4DV AR)-like methods relying on per fect model dynamics have dif- ficulty with providing error estimates. The new method does not have these drawbacks. In fact, it combines advantages from both methods in that it does provide error estimates while automatically having balanced states after analysis, without extra computations. It is based on ensemble or Monte Carlo integrations to simulate the probability density of the model evolution. When obser vations are available, the so-called importance resampling algorithm is applied. From Bayes’ s theorem it follows that each ensemble member receives a new weight dependent on its ‘ ‘distance’ ’ t o the obser vations. Because the weights are strongly var ying, a resampling of the ensemble is necessar y. This resampling is done such that members with high weights are duplicated according to their weights, while low-weight members are largely ignored. In passing, it is noted that data assimilation is not an inverse problem by nature, although it can be for mulated that way . Also, it is shown that the posterior variance can be larger than the prior if the usual Gaussian framework is set aside. However , i n the examples presented here, the entropy of the probability densities is decreasing. The application to the ocean area around South Africa, gover ned by strongly nonlinear dynamics, shows that the method is working satisfactorily . The strong and weak points of the method are discussed and possible improvements are proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in structures in order to improve reliability and reduce life-cycle costs. The greatest challenge for designing a SHM system is knowing what changes to look for and how to classify them. Different approaches for SHM have been proposed for damage identification, each one with advantages and drawbacks. This paper presents a methodology for improvement in vibration signal analysis using statistics information involving the probability density. Generally, the presence of noises in input and output signals results in false alarms, then, it is important that the methodology can minimize this problem. In this paper, the proposed approach is experimentally tested in a flexible plate using a piezoelectric (PZT) actuator to provide the disturbance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the theoretical and experimental results obtained for the excitonic binding energy (Eb) in a set of single and coupled double quantum wells (SQWs and CDQWs) of GaAs/AlGaAs with different Al concentrations (Al%) and inter-well barrier thicknesses. To obtain the theoretical Eb the method proposed by Mathieu, Lefebvre and Christol (MLC) was used, which is based on the idea of fractional-dimension space, together with the approach proposed by Zhao et al., which extends the MLC method for application in CDQWs. Through magnetophotoluminescence (MPL) measurements performed at 4 K with magnetic fields ranging from 0 T to 12 T, the diamagnetic shift curves were plotted and adjusted using two expressions: one appropriate to fit the curve in the range of low intensity fields and another for the range of high intensity fields, providing the experimental Eb values. The effects of increasing the Al% and the inter-well barrier thickness on E b are discussed. The Eb reduction when going from the SQW to the CDQW with 5 Å inter-well barrier is clearly observed experimentally for 35% Al concentration and this trend can be noticed even for concentrations as low as 25% and 15%, although the Eb variations in these latter cases are within the error bars. As the Zhao's approach is unable to describe this effect, the wave functions and the probability densities for electrons and holes were calculated, allowing us to explain this effect as being due to a decrease in the spatial superposition of the wave functions caused by the thin inter-well barrier. © 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the theoretical and experimental results obtained for the excitonic binding energy (Eb) in a set of single and coupled double quantum wells (SQWs and CDQWs) of GaAs/AlGaAs with different Al concentrations (Al%) and inter-well barrier thicknesses. To obtain the theoretical Eb the method proposed by Mathieu, Lefebvre and Christol (MLC) was used, which is based on the idea of fractional-dimension space, together with the approach proposed by Zhao et al., which extends the MLC method for application in CDQWs. Through magnetophotoluminescence (MPL) measurements performed at 4 K with magnetic fields ranging from 0 T to 12 T, the diamagnetic shift curves were plotted and adjusted using two expressions: one appropriate to fit the curve in the range of low intensity fields and another for the range of high intensity fields, providing the experimental Eb values. The effects of increasing the Al% and the inter-well barrier thickness on Eb are discussed. The Eb reduction when going from the SQW to the CDQW with 5 Å inter-well barrier is clearly observed experimentally for 35% Al concentration and this trend can be noticed even for concentrations as low as 25% and 15%, although the Eb variations in these latter cases are within the error bars. As the Zhao's approach is unable to describe this effect, the wave functions and the probability densities for electrons and holes were calculated, allowing us to explain this effect as being due to a decrease in the spatial superposition of the wave functions caused by the thin inter-well barrier.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the sample-to-sample fluctuations of the overlap probability densities from large-scale equilibrium simulations of the three-dimensional Edwards-Anderson spin glass below the critical temperature. Ultrametricity, stochastic stability, and overlap equivalence impose constraints on the moments of the overlap probability densities that can be tested against numerical data. We found small deviations from the Ghirlanda Guerra predictions, which get smaller as system size increases. We also focus on the shape of the overlap distribution, comparing the numerical data to a mean-field-like prediction in which finite-size effects are taken into account by substituting delta functions with broad peaks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most of the common techniques for estimating conditional probability densities are inappropriate for applications involving periodic variables. In this paper we apply two novel techniques to the problem of extracting the distribution of wind vector directions from radar scatterometer data gathered by a remote-sensing satellite.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Molecular, 2016.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Developing sampling strategies to target biological pests such as insects in stored grain is inherently difficult owing to species biology and behavioural characteristics. The design of robust sampling programmes should be based on an underlying statistical distribution that is sufficiently flexible to capture variations in the spatial distribution of the target species. Results: Comparisons are made of the accuracy of four probability-of-detection sampling models - the negative binomial model,1 the Poisson model,1 the double logarithmic model2 and the compound model3 - for detection of insects over a broad range of insect densities. Although the double log and negative binomial models performed well under specific conditions, it is shown that, of the four models examined, the compound model performed the best over a broad range of insect spatial distributions and densities. In particular, this model predicted well the number of samples required when insect density was high and clumped within experimental storages. Conclusions: This paper reinforces the need for effective sampling programs designed to detect insects over a broad range of spatial distributions. The compound model is robust over a broad range of insect densities and leads to substantial improvement in detection probabilities within highly variable systems such as grain storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Published also as: Documento de Trabajo Banco de España 0504/2005.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For subordinators with positive drift we extend recent results on the structure of the potential measures and the renewal densities. Applying Fourier analysis a new representation of the potential densities is derived from which we deduce asymptotic results and show how the atoms of the Lévy measure translate into points of (non)differentiability of the potential densities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If X is a stable process of index α∈(0, 2) whose Lévy measure has density cx−α−1 on (0, ∞), and S1=sup0x)∽Aα−1x−α as x→∞ and P(S1≤x)∽Bα−1ρ−1xαρ as x↓0. [Here ρ=P(X1>0) and A and B are known constants.] It is also known that S1 has a continuous density, m say. The main point of this note is to show that m(x)∽Ax−(α+1) as x→∞ and m(x)∽Bxαρ−1 as x↓0. Similar results are obtained for related densities.