969 resultados para Primitive neuroectodermal tumors (PNET)
Resumo:
This thesis is focused on the metabolomic study of human cancer tissues by ex vivo High Resolution-Magic Angle Spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. This new technique allows for the acquisition of spectra directly on intact tissues (biopsy or surgery), and it has become very important for integrated metabonomics studies. The objective is to identify metabolites that can be used as markers for the discrimination of the different types of cancer, for the grading, and for the assessment of the evolution of the tumour. Furthermore, an attempt to recognize metabolites, that although involved in the metabolism of tumoral tissues in low concentration, can be important modulators of neoplastic proliferation, was performed. In addition, NMR data was integrated with statistical techniques in order to obtain semi-quantitative information about the metabolite markers. In the case of gliomas, the NMR study was correlated with gene expression of neoplastic tissues. Chapter 1 begins with a general description of a new “omics” study, the metabolomics. The study of metabolism can contribute significantly to biomedical research and, ultimately, to clinical medical practice. This rapidly developing discipline involves the study of the metabolome: the total repertoire of small molecules present in cells, tissues, organs, and biological fluids. Metabolomic approaches are becoming increasingly popular in disease diagnosis and will play an important role on improving our understanding of cancer mechanism. Chapter 2 addresses in more detail the basis of NMR Spectroscopy, presenting the new HR-MAS NMR tool, that is gaining importance in the examination of tumour tissues, and in the assessment of tumour grade. Some advanced chemometric methods were used in an attempt to enhance the interpretation and quantitative information of the HR-MAS NMR data are and presented in chapter 3. Chemometric methods seem to have a high potential in the study of human diseases, as it permits the extraction of new and relevant information from spectroscopic data, allowing a better interpretation of the results. Chapter 4 reports results obtained from HR-MAS NMR analyses performed on different brain tumours: medulloblastoma, meningioms and gliomas. The medulloblastoma study is a case report of primitive neuroectodermal tumor (PNET) localised in the cerebellar region by Magnetic Resonance Imaging (MRI) in a 3-year-old child. In vivo single voxel 1H MRS shows high specificity in detecting the main metabolic alterations in the primitive cerebellar lesion; which consist of very high amounts of the choline-containing compounds and of very low levels of creatine derivatives and N-acetylaspartate. Ex vivo HR-MAS NMR, performed at 9.4 Tesla on the neoplastic specimen collected during surgery, allows the unambiguous identification of several metabolites giving a more in-depth evaluation of the metabolic pattern of the lesion. The ex vivo HR-MAS NMR spectra show higher detail than that obtained in vivo. In addition, the spectroscopic data appear to correlate with some morphological features of the medulloblastoma. The present study shows that ex vivo HR-MAS 1H NMR is able to strongly improve the clinical possibility of in vivo MRS and can be used in conjunction with in vivo spectroscopy for clinical purposes. Three histological subtypes of meningiomas (meningothelial, fibrous and oncocytic) were analysed both by in vivo and ex vivo MRS experiments. The ex vivo HR-MAS investigations are very helpful for the assignment of the in vivo resonances of human meningiomas and for the validation of the quantification procedure of in vivo MR spectra. By using one- and two dimensional experiments, several metabolites in different histological subtypes of meningiomas, were identified. The spectroscopic data confirmed the presence of the typical metabolites of these benign neoplasms and, at the same time, that meningomas with different morphological characteristics have different metabolic profiles, particularly regarding macromolecules and lipids. The profile of total choline metabolites (tCho) and the expression of the Kennedy pathway genes in biopsies of human gliomas were also investigated using HR-MAS NMR, and microfluidic genomic cards. 1H HR-MAS spectra, allowed the resolution and relative quantification by LCModel of the resonances from choline (Cho), phosphorylcholine (PC) and glycerolphorylcholine (GPC), the three main components of the combined tCho peak observed in gliomas by in vivo 1H MRS spectroscopy. All glioma biopsies depicted an increase in tCho as calculated from the addition of Cho, PC and GPC HR-MAS resonances. However, the increase was constantly derived from augmented GPC in low grade NMR gliomas or increased PC content in the high grade gliomas, respectively. This circumstance allowed the unambiguous discrimination of high and low grade gliomas by 1H HR-MAS, which could not be achieved by calculating the tCho/Cr ratio commonly used by in vivo 1H MR spectroscopy. The expression of the genes involved in choline metabolism was investigated in the same biopsies. The present findings offer a convenient procedure to classify accurately glioma grade using 1H HR-MAS, providing in addition the genetic background for the alterations of choline metabolism observed in high and low gliomas grade. Chapter 5 reports the study on human gastrointestinal tract (stomach and colon) neoplasms. The human healthy gastric mucosa, and the characteristics of the biochemical profile of human gastric adenocarcinoma in comparison with that of healthy gastric mucosa were analyzed using ex vivo HR-MAS NMR. Healthy human mucosa is mainly characterized by the presence of small metabolites (more than 50 identified) and macromolecules. The adenocarcinoma spectra were dominated by the presence of signals due to triglycerides, that are usually very low in healthy gastric mucosa. The use of spin-echo experiments enable us to detect some metabolites in the unhealthy tissues and to determine their variation with respect to the healthy ones. Then, the ex vivo HR-MAS NMR analysis was applied to human gastric tissue, to obtain information on the molecular steps involved in the gastric carcinogenesis. A microscopic investigation was also carried out in order to identify and locate the lipids in the cellular and extra-cellular environments. Correlation of the morphological changes detected by transmission (TEM) and scanning (SEM) electron microscopy, with the metabolic profile of gastric mucosa in healthy, gastric atrophy autoimmune diseases (AAG), Helicobacter pylori-related gastritis and adenocarcinoma subjects, were obtained. These ultrastructural studies of AAG and gastric adenocarcinoma revealed lipid intra- and extra-cellularly accumulation associated with a severe prenecrotic hypoxia and mitochondrial degeneration. A deep insight into the metabolic profile of human healthy and neoplastic colon tissues was gained using ex vivo HR-MAS NMR spectroscopy in combination with multivariate methods: Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). The NMR spectra of healthy tissues highlight different metabolic profiles with respect to those of neoplastic and microscopically normal colon specimens (these last obtained at least 15 cm far from the adenocarcinoma). Furthermore, metabolic variations are detected not only for neoplastic tissues with different histological diagnosis, but also for those classified identical by histological analysis. These findings suggest that the same subclass of colon carcinoma is characterized, at a certain degree, by metabolic heterogeneity. The statistical multivariate approach applied to the NMR data is crucial in order to find metabolic markers of the neoplastic state of colon tissues, and to correctly classify the samples. Significant different levels of choline containing compounds, taurine and myoinositol, were observed. Chapter 6 deals with the metabolic profile of normal and tumoral renal human tissues obtained by ex vivo HR-MAS NMR. The spectra of human normal cortex and medulla show the presence of differently distributed osmolytes as markers of physiological renal condition. The marked decrease or disappearance of these metabolites and the high lipid content (triglycerides and cholesteryl esters) is typical of clear cell renal carcinoma (RCC), while papillary RCC is characterized by the absence of lipids and very high amounts of taurine. This research is a contribution to the biochemical classification of renal neoplastic pathologies, especially for RCCs, which can be evaluated by in vivo MRS for clinical purposes. Moreover, these data help to gain a better knowledge of the molecular processes envolved in the onset of renal carcinogenesis.
Resumo:
Persons with Down syndrome (DS) uniquely have an increased frequency of leukemias but a decreased total frequency of solid tumors. The distribution and frequency of specific types of brain tumors have never been studied in DS. We evaluated the frequency of primary neural cell embryonal tumors and gliomas in a large international data set. The observed number of children with DS having a medulloblastoma, central nervous system primitive neuroectodermal tumor (CNS-PNET) or glial tumor was compared to the expected number. Data were collected from cancer registries or brain tumor registries in 13 countries of Europe, America, Asia and Oceania. The number of DS children with each category of tumor was treated as a Poisson variable with mean equal to 0.000884 times the total number of registrations in that category. Among 8,043 neural cell embryonal tumors (6,882 medulloblastomas and 1,161 CNS-PNETs), only one patient with medulloblastoma had DS, while 7.11 children in total and 6.08 with medulloblastoma were expected to have DS. (p 0.016 and 0.0066 respectively). Among 13,797 children with glioma, 10 had DS, whereas 12.2 were expected. Children with DS appear to be specifically protected against primary neural cell embryonal tumors of the CNS, whereas gliomas occur at the same frequency as in the general population. A similar protection against neuroblastoma, the principal extracranial neural cell embryonal tumor, has been observed in children with DS. Additional genetic material on the supernumerary chromosome 21 may protect against embryonal neural cell tumor development.
Resumo:
Persons with Down syndrome (DS) uniquely have an increased frequency of leukemias but a decreased total frequency of solid tumors. The distribution and frequency of specific types of brain tumors have never been studied in DS. We evaluated the frequency of primary neural cell embryonal tumors and gliomas in a large international data set. The observed number of children with DS having a medulloblastoma, central nervous system primitive neuroectodermal tumor (CNS-PNET) or glial tumor was compared to the expected number. Data were collected from cancer registries or brain tumor registries in 13 countries of Europe, America, Asia and Oceania. The number of DS children with each category of tumor was treated as a Poisson variable with mean equal to 0.000884 times the total number of registrations in that category. Among 8,043 neural cell embryonal tumors (6,882 medulloblastomas and 1,161 CNS-PNETs), only one patient with medulloblastoma had DS, while 7.11 children in total and 6.08 with medulloblastoma were expected to have DS. (p 0.016 and 0.0066 respectively). Among 13,797 children with glioma, 10 had DS, whereas 12.2 were expected. Children with DS appear to be specifically protected against primary neural cell embryonal tumors of the CNS, whereas gliomas occur at the same frequency as in the general population. A similar protection against neuroblastoma, the principal extracranial neural cell embryonal tumor, has been observed in children with DS. Additional genetic material on the supernumerary chromosome 21 may protect against embryonal neural cell tumor development.
Resumo:
Objective: It has been suggested that parental occupation, particularly farming, increased the risk of Ewing's sarcoma in the offspring. In a national case-control study we examined the relationship between farm and other parental occupational exposures and the risk of cancer in the offspring. Methods: Cases were 106 persons with confirmed Ewing's sarcoma or peripheral primitive neuroectodermal tumor. Population-based controls (344) were selected randomly via telephone. Information was collected by interview (84% face-to-face). Results: We found an excess of case mothers who worked on farms at conception and/or pregnancy (odds ratio (OR) = 2.3, 95% confidence interval (CI) 0.5-12.0) and a slightly smaller excess of farming fathers; more case mothers usually worked as laborers, machine operators, or drivers (OR = 1.8, 95% CI 0.9-3.9). Risk doubled for those whose mothers handled pesticides and insecticides, or fathers who handled solvents and glues, and oils and greases. Further, more cases lived on farms (OR = 1.6, 95% CI 0.9-2.8). In the 0-20 years group, the risk doubled for those who ever lived on a farm (OR = 2.0, 95% CI 1.0-3.9), and more than tripled for those with farming fathers at conception and/or pregnancy (OR = 3.5, 95% CI 1.0-11.9). Conclusions: Our data support the general hypothesis of an association of Ewing's sarcoma family of tumors with farming, particularly at younger ages, who represent the bulk of cases, and are more likely to share etiologic factors.
Resumo:
AIMTo assess the double-balloon enteroscopy (DBE) role in malignant small bowel tumors (MSBT). METHODS This is a retrospective descriptive study performed in a single center. All consecutive patients who underwent a DBE with final diagnosis of a malignant neoplasm from 2004 to 2014 in our referral center were included. Patient demographic and clinical pathological characteristics were recorded and reviewed. MSBT diagnosis was achieved either by DBE directed biopsy with multiple tissue sampling, endoscopic findings or histological analysis of surgical specimen. We have analyzed double-balloon enteroscopy impact in outcome and clinical course of these patients. RESULTS Of 627 patients, 28 (4.5%) (mean age = 60 ± 17.3 years) underwent 30 procedures (25 anterograde, 5 retrograde) and were diagnosed of a malignant tumor. Patients presented with obscure gastrointestinal bleeding (n = 19, 67.9%), occlusion syndrome (n = 7, 25%) and diarrhea (n = 1, 3.6%). They were diagnosed by DBE biopsy (n = 18, 64.3%), histological analysis of surgical specimen (n = 7, 25%) and unequivocal endoscopic findings (n = 2, 7.1%). Gastrointestinal stromal tumor (n = 8, 28.6%), adenocarcinoma (n = 7, 25%), lymphoma (n = 4, 14.3%), neuroendocrine tumor (n = 4, 14.3%), metastatic (n = 3, 10.7%) and Kaposi sarcoma (n = 1, 3.6%) were identified. DBE modified outcome in 7 cases (25%), delaying or avoiding emergency surgery (n = 3), modifying surgery approach (n = 2) and indicating emergency SB partial resection instead of elective approach (n = 2). CONCLUSION DBE may be critical in the management of MSBT providing additional information that may be decisive in the clinical course of these patients.
Resumo:
Although chemokines and their receptors were initially identified as regulators of cell trafficking during inflammation and immune response, they have emerged as crucial players in all stages of tumor development, primary growth, migration, angiogenesis, and establishment as metastases in distant target organs. Neuroectodermal tumors regroup neoplasms originating from the embryonic neural crest cells, which display clinical and biological similarities. These tumors are highly malignant and rapidly progressing diseases that disseminate to similar target organs such as bone marrow, bone, liver and lungs. There is increasing evidence that interaction of several chemokine receptors with corresponding chemokine ligands are implicated in the growth and invasive characteristics of these tumors. In this review we summarize the current knowledge on the role of CXCL12 chemokine and its CXCR4 and CXCR7 receptors in the progression and survival of neuroectodermal tumors, with particular emphasis on neuroblastoma, the most typical and enigmatic neuroectodermal childhood tumor.
Resumo:
Trilateral retinoblastoma (TRb) is a rare disease associating intraocular retinoblastoma with intracranial primitive neuroectodermal tumor. Treatment is difficult and prognosis is poor. This multicenter study evaluates clinical findings and MR imaging characteristics of associated intracranial tumors in Rb patients. Clinical data of 17 patients (16 TRb and 1 quadrilateral Rb patients) included time intervals between Rb and TRb diagnosis and presence of baseline brain-imaging (BBI). Two reviewers reviewed all images individually and one reviewer per center evaluated their images. Consensus was reached during a joint scoring session. Studies were reviewed for tumor location, size and imaging characteristics (signal intensity (SI) on T1- and T2-weighted images, enhancement pattern and cystic appearance). Of 18 intracranial tumors, 78 % were located in the pineal gland and 22 % suprasellar. All tumors showed well-defined borders with mostly heterogenous enhancement (72 %) and isointense SI on T1- (78 %) and T2-weighted images (72 %) compared to gray matter. The majority of pineal TRbs showed a cystic component (57 %). TRb detected synchronously with the intraocular tumors on BBI (n = 7) were significantly smaller (P = 0.02), and mainly asymptomatic than TRb detected later on (n = 10). Overall, 5-year-survival of TRb patients detected on BBI was 67 % (95 % CI 29-100 %) compared to 11 % (95 % CI 0-32 %) for the group with delayed diagnosis. TRb mainly develops in the pineal gland and frequently presents with a cystic appearance that could be misinterpreted as benign pineal cysts. Routine BBI in all newly diagnosed Rb patients can detect TRb at a subclinical stage.
Resumo:
Tumors of the pineal region are uncommon, comprising approximately 0.4-1% of all intracranial tumors in adults in European and American series. Histopathologically, they are a very heterogeneous group of tumors. Of genuine pineal tumors, pineal parenchymal tumors of intermediate differentiation (PPTIDs) are the least frequently found type. In this paper, we report on the case of a patient with an unexpected and difficult-to-diagnose PPTID. A 2.2 x 2.2-cm midline mass within the posterior part of the third ventricle with consecutive obstructive hydrocephalus was found in a 44-year-old man presenting with diplopia and gait disturbances. There was no clear connection of the tumor to the pineal gland. Differential diagnosis included all intraventricular and midline tumors, therefore a biopsy was taken. Preliminary histopathological diagnosis was germinoma or primitive neuroectodermal tumor, and the tissue sample was reexamined by a referential neuropathological institute. Final diagnosis was PPTID. The tumor was then resected through a transventricular/transchoroidal approach. Histopathological examination of tumor specimen confirmed the diagnosis of a PPTID. Postoperatively, the patient received gamma-knife radiosurgery. At 1-year follow-up, there are no signs of tumor regrowth. Diagnosis of pineal parenchymal tumors in general and PPTIDs in particular can be troublesome. Their histopathological features are still being defined, as is the biological behavior of the different tumor entities. Thus, treatment options including surgery, radiation therapy, and chemotherapy remain controversial. We recommend surgical removal of PPTID, preferably in toto whenever the size of the tumor permits that kind of excision.
Resumo:
BACKGROUND Neuroendocrine tumors are well vascularized and express specific cell surface markers, such as somatostatin receptors and the glucagon-like peptide-1 receptor (GLP-1R). Using the Rip1Tag2 transgenic mouse model of pancreatic neuroendocrine tumors (pNET), we have investigated the potential benefit of a combination of anti-angiogenic treatment with targeted internal radiotherapy. METHODS [Lys40(Ahx-DTPA-111In)NH2]-exendin-4, a radiopeptide that selectively binds to GLP-1R expressed on insulinoma and other neuroendocrine tumor cells, was co-administered with oral vatalanib (an inhibitor of vascular endothelial growth factor receptors (VEGFR)) or imatinib (a c-kit/PDGFR inhibitor). The control groups included single-agent kinase inhibitor treatments and [Lys40(Ahx-DTPA-natIn)NH2]-exendin-4 monotherapy. For biodistribution, Rip1Tag2 mice were pre-treated with oral vatalanib or imatinib for 0, 3, 5, or 7 days at a dose of 100 mg/kg. Subsequently, [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 was administered i.v., and the biodistribution was assessed after 4 h. For therapy, the mice were injected with 1.1 MBq [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 and treated with vatalanib or imatinib 100 mg/kg orally for another 7 days. Tumor volume, tumor cell apoptosis and proliferation, and microvessel density were quantified. RESULTS Combination of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 and vatalanib was significantly more effective than single treatments (p < 0.05) and reduced the tumor volume by 97% in the absence of organ damage. The pre-treatment of mice with vatalanib led to a reduction in the tumor uptake of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4, indicating that concomitant administration of vatalanib and the radiopeptide was the best approach. Imatinib did not show a synergistic effect with [Lys40(Ahx-DTPA-111In)NH2]-exendin-4. CONCLUSION The combination of 1.1 MBq of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 with 100 mg/kg vatalanib had the same effect on a neuroendocrine tumor as the injection of 28 MBq of the radiopeptide alone but without any apparent side effects, such as radiation damage of the kidneys.
Resumo:
Following posterior fossa surgery for resection of childhood medulloblastoma and primitive neuroectodermal tumor (M/PNET), cerebellar mutism (CM) may develop. This is a condition of absent or diminished speech in a conscious patient with no evidence of oral apraxia, which can be accompanied by other symptoms of the posterior fossa syndrome complex, which includes ataxia and hypotonia. Little is known about the etiology. Therefore, we conducted a SNP, gene, and pathway-level analysis to assess the role of host genetic variation on the risk of CM in M/PNET subjects following treatment. Cases (n= 20) and controls (n= 53) were recruited from the Childhood Cancer Epidemiology and Prevention Center, in Houston, TX. DNA samples were genotyped using the Illumina Human 1M Quad SNP chip. Ten pathways were identified from logistic regression used to identify the marginal effect of each SNP on CM risk. The minP test was conducted to identify associations between SNPs categorized to genes and CM risk. Pathways were assessed to determine if there was a significant enrichment of genes in the pathway compared to all other pathways. There were 78 genes that reached the threshold of min P ≤0.05 in 948 genes. The Neurotoxicity pathway was the most significant pathway after adjusting for multiple comparisons (q=0.040 and q=0.005, using Fisher's exact test and a test of proportions, respectively). Most genes within the Neurotoxicity pathway that reached a threshold of minP ≤0.05 were known to have an apoptosis function, possibly inducing neuronal apoptosis in the dentatothalamocortical pathway, and may be important in CM etiology in this population. This is the first study to assess the potential role of genetic risk factors on CM. As an exploratory study, these results should be replicated in a larger sample. ^
Resumo:
BACKGROUND The role of genes involved in the control of progression from the G1 to the S phase of the cell cycle in melanoma tumors in not fully known. The aim of our study was to analyse mutations in TP53, CDKN1A, CDKN2A, and CDKN2B genes in melanoma tumors and melanoma cell lines METHODS We analysed 39 primary and metastatic melanomas and 9 melanoma cell lines by single-stranded conformational polymorphism (SSCP). RESULTS The single-stranded technique showed heterozygous defects in the TP53 gene in 8 of 39 (20.5%) melanoma tumors: three new single point mutations in intronic sequences (introns 1 and 2) and exon 10, and three new single nucleotide polymorphisms located in introns 1 and 2 (C to T transition at position 11701 in intron 1; C insertion at position 11818 in intron 2; and C insertion at position 11875 in intron 2). One melanoma tumor exhibited two heterozygous alterations in the CDKN2A exon 1 one of which was novel (stop codon, and missense mutation). No defects were found in the remaining genes. CONCLUSION These results suggest that these genes are involved in melanoma tumorigenesis, although they may be not the major targets. Other suppressor genes that may be informative of the mechanism of tumorigenesis in skin melanomas should be studied.
Resumo:
BACKGROUND This study was realized thanks to the collaboration of children and adolescents who had been resected from cerebellar tumors. The medulloblastoma group (CE+, n = 7) in addition to surgery received radiation and chemotherapy. The astrocytoma group (CE, n = 13) did not receive additional treatments. Each clinical group was compared in their executive functioning with a paired control group (n = 12). The performances of the clinical groups with respect to controls were compared considering the tumor's localization (vermis or hemisphere) and the affectation (or not) of the dentate nucleus. Executive variables were correlated with the age at surgery, the time between surgery-evaluation and the resected volume. METHODS The executive functioning was assessed by means of WCST, Complex Rey Figure, Controlled Oral Word Association Test (letter and animal categories), Digits span (WISC-R verbal scale) and Stroop test. These tests are very sensitive to dorsolateral PFC and/or to medial frontal cortex functions. The scores for the non-verbal Raven IQ were also obtained. Direct scores were corrected by age and transformed in standard scores using normative data. The neuropsychological evaluation was made at 3.25 (SD = 2.74) years from surgery in CE group and at 6.47 (SD = 2.77) in CE+ group. RESULTS The Medulloblastoma group showed severe executive deficit (= 1.5 SD below normal mean) in all assessed tests, the most severe occurring in vermal patients. The Astrocytoma group also showed executive deficits in digits span, semantic fluency (animal category) and moderate to slight deficit in Stroop (word and colour) tests. In the astrocytoma group, the tumor's localization and dentate affectation showed different profile and level of impairment: moderate to slight for vermal and hemispheric patients respectively. The resected volume, age at surgery and the time between surgery-evaluation correlated with some neuropsychological executive variables. CONCLUSION Results suggest a differential prefrontal-like deficit due to cerebellar lesions and/or cerebellar-frontal diaschisis, as indicate the results in astrocytoma group (without treatments), that also can be generated and/or increased by treatments in the medulloblastoma group. The need for differential rehabilitation strategies for specific clinical groups is remarked. The results are also discussed in the context of the Cerebellar Cognitive Affective Syndrome.
Resumo:
A retrospective cohort study was conducted to analyse the effectiveness of bevacizumab and irinotecan (BVZ/CPT-11) as a second-line treatment in patients with primary glioblastoma multiforme (GBM) in comparison with a control group that were not administered BVZ/CPT-11 at the first recurrence. The difference in overall survival (OS) between the two groups was used as a predictor of effectiveness. OS was calculated according to prognostic factors and gender. A total of 28 and 32 patients were enrolled in the BVZ/CPT-11 cohort and control group, respectively. The median OS was 17.94 months (95% CI, 14.91-20.96) in the BVZ/CPT-11 treatment cohort and 10.97 months (95% CI, 7.65-14.30) in the control cohort. The results obtained on the effectiveness of BVZ/CPT-11 treatment in patients with primary GBM are consistent with data from previous studies. No significant differences were identified in OS based on prognostic factors; therefore, the latter cannot be used to select patients who would incur the greatest benefits from BVZ/CPT-11 treatment.
Resumo:
About 2% of all paragangliomas are located in the chest, and a few have been described to be found in the heart. Primary cardiac paragangliomas are extremely uncommon tumors and surgical experience with this neoplasm is limited. Treatment strategies described in the literature have included simple excision, excision with reconstruction, autotransplantation after excision of the tumor and even orthotopic cardiac transplantation, depending on the extent of disease. A primary retrocardiac paraganglioma catecholamine-productive was identified in an asymptomatic 49-year old female associated to familial pheochromocytoma-paraganglioma syndrome caused by germline mutation of the gen which codifies for the subunit B of succinate dehydrogenase enzyme (SDHB). The neoplasm was surgically excised from the posterior surface of the left atrium via median sternotomy using cardiopulmonary bypass. Direct ligation of feeding vessels of the tumor along with left atrial reinforcement using a pericardial patch was performed. The post-operative course was uneventful, with normalization of catecholamine secretion and no recurrence at three-month follow-up. We review the current literature about this exceptional cardiac tumor, pathophysiological conditions and options for surgical management.