1000 resultados para Primary Productivity
Resumo:
Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programs. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulfide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta-analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and economic costs, macroalgal blooms have ecological effects that may alter their capacity to deliver important ecosystem services.
Resumo:
We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce integrated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll-a concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and mixed-layer depth (MLD). The models were most sensitive to uncertainties in surface chlorophyll, generally performing better with in situ chlorophyll than with satellite-derived values. They were much less sensitive to uncertainties in PAR, SST, and MLD, possibly due to relatively narrow ranges of input data and/or relatively little difference between input data sources. Regardless of type or complexity, most of the models were not able to fully reproduce the variability of in situ NPP, whereas some of them exhibited almost no bias (i.e., reproduced the mean of in situ NPP). The models performed relatively well in low-productivity seasons as well as in sea ice-covered/deep-water regions. Depth-resolved models correlated more with in situ NPP than other model types, but had a greater tendency to overestimate mean NPP whereas absorption-based models exhibited the lowest bias associated with weaker correlation. The models performed better when a subsurface chlorophyll-a maximum (SCM) was absent. As a group, the models overestimated mean NPP, however this was partly offset by some models underestimating NPP when a SCM was present. Our study suggests that NPP models need to be carefully tuned for the Arctic Ocean because most of the models performing relatively well were those that used Arctic-relevant parameters.
Resumo:
Evidence of 11-year Schwabe solar sunspot cycles, El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) were detected in an annual record of diatomaceous laminated sediments from anoxic Effingham Inlet, Vancouver Island, British Columbia. Radiometric dating and counting of annual varves dates the sediments from AD 1947-1993. Intact sediment slabs were X-rayed for sediment structure (lamina thickness and composition based on gray-scale), and subsamples were examined for diatom abundances and for grain size. Wavelet analysis reveals the presence of ~2-3, ~4.5, ~7 and ~9-12-year cycles in the diatom record and an w11e13 year record in the sedimentary varve thickness record. These cycle lengths suggest that both ENSO and the sunspot cycle had an influence on primary productivity and sedimentation patterns. Sediment grain size could not be correlated to the sunspot cycle although a peak in the grain size data centered around the mid-1970s may be related to the 1976-1977 Pacific climate shift, which occurred when the PDO index shifted from negative (cool conditions) to positive (warm conditions). Additional evidence of the PDO regime shift is found in wavelet and cross-wavelet results for Skeletonema costatum, a weakly silicified variant of S. costatum, annual precipitation and April to June precipitation. Higher spring (April/May) values of the North Pacific High pressure index during sunspot minima suggest that during this time, increased cloud cover and concomitant suppression of the Aleutian Low (AL) pressure system led to strengthened coastal upwelling and enhanced diatom production earlier in the year. These results suggest that the 11-year solar cycle, amplified by cloud cover and upwelling changes, as well as ENSO, exert significant influence on marine primary productivity in the northeast Pacific. The expression of these cyclic phenomena in the sedimentary record were in turn modulated by the phase of PDO, as indicated by the change in period of ENSO and suppression of the solar signal in the record after the 1976-1977 regime shift. © 2013 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
A naturally occurring population of photosynthetic bacteria, located in the meromictic Crawford Lake, was examined during two field seasons (1979-1981). Primary production, biomass, light intensity, lake transparency, pH and bicarbonate concentration were all monitored during this period at selected time intervals. Analysis of the data indicated that (l4C) bacterial photosynthesis was potentially limited by the ambient bicarbonate concentration. Once a threshold value (of 270 mg/l) was reached a dramatic (2 to 10 fold) increase in the primary productivity of the bacteria was observed. Light intensity appeared to have very little effect on the primary productivity of the bacteria, even at times when analyses by Parkin and Brock (1980a) suggested that light intensity could be limiting (i.e., 3.0-5.0 ft. candles). Shifts in the absorption maxima at 430 nrn of the .bacteriochlorophyll spectrum suggested that changes in the species or strain composition of the photosynthetic bacteria had occurred during the summer months. It was speculated that these changes might reflect seasonal variation in the wavelength of light reaching the bacteria. Chemocline erosion did not have the same effect on the population size (biomass) of the photosynthetic bacteria in Crawford Lake (this thesis) as it did in Pink Lake (Dickman, 1979). In Crawford Lake the depth of the chemocline was lowered with no apparent loss in biomass (according to bacteriochlorophyll data). A reverse current was. proposed to explain the observation. The photosynthetic bacteria contributed a significant proportion (10-60%) of the lake1s primary productivitya Direct evidence was obtained with (14C) labelling of the photosynthetic bacteria, indica.ting that the zooplankton were grazing the photosynthetic bacteria. This indicated that some of the photosynthetic bacterial productivity was assimilated into the food chain of the lake. Therefore, it was concluded that the photosynthetic bacteria made a significant contribution to the total productivity of Crawford Lake.
Resumo:
The water quality and primary productivity of Valanthakad backwater (9° 55 10. 24 N latitude and 76° 20 01. 23 E longitude) was monitored from June to November 2007. Significant spatial and temporal variations in temperature, transparency, salinity, pH, dissolved oxygen, sulphides, carbon dioxide, alkalinity, biochemical oxygen demand, phosphatephosphorus, nitrate-nitrogen, nitrite-nitrogen as well as primary productivity could be observed from the study. Transparency was low (53.75 cm to 159 cm) during the active monsoon months when the intensity of solar radiation was minimum, which together with the run off from the land resulted in turbid waters in the study sites. The salinity in both the stations was low (0.10 ‰ to 4.69 ‰) except in August and November 2007. The presence of total sulphide (0.08 mg/ l to 1.84 mg/ l) and higher carbon dioxide (3 mg/ l to 17 mg/ l) could be due to hospital discharges and decaying slaughter house wastes in Station 1 and also from the mangrove vegetation in Station 2. Nitrate-nitrogen and phosphate-phosphorus depicted higher values and pronounced variations in the monsoon season. Maximum net primary production was seen in November (0.87 gC/ m3/ day) and was reported nil in September. The chlorophyll pigments showed higher values in July, August and November with a negative correlation with phosphate-phosphorus and nitrite-nitrogen. The study indicated that the water quality and productivity of Valanthakad backwater is impacted and is the first report from the region
Resumo:
Retting.of coconut husk is one of the major problems of pollution in the estuaries (Kayals) of Kerala. This paper discusses the salient features associated with the variation in gross and net primary productivity values in the Kadinarnkularn Kayal based on lortnightlydala from twosclected stations frorn Octobcr1987 to September 1988.The gross primary productivity value in the surface water ranged from 0.06 to 0.29gC/m3/day at Station Iand from 0.06 to 1.49gC/rn3/dayatstation II. In the bottom wateritrangcdfrorn oto 0.21 gC/m2/ day at station I whereas that at station II from 0.03 to 1.41gC/m3j day. The net productivity in the surface water at station I varied from 0 to 024 gC/m Iday Whereas that atstation II varied from 0.02to 1.44gC/m3Iday.AI the bottomwaterilvaried from ato 0.19gC/m3/ day at station I and from 0.01 to 1.21gC/m3/day at station II. The monsoon period showed the highest mean seasonal value at stations I and II. The total depletion of dissolved oxygen giving rise to anoxic condition coupled with the production of large quantities of hydrogen sulphide was found to be detrimental to the gross and net productivity values in the retting zone
Resumo:
A variabilidade anual da produção fotossintética (PP) pelo fitoplâncton na zona da barragem da Represa de Jurumirim (São Paulo, Brasil) foi medida após um estudo no período de três anos sucessivos, com o objetivo de identificar padrões recorrentes e suas causas. Medidas da variabilidade da PP em escala diária foram obtidas em dois períodos do ano (estações seca e chuvosa). Nenhum padrão recorrente foi verificado nos dados de PP, visto não haver relação de sua variabilidade com nenhum fator hidrológico (precipitação, nível e vazão de água e washout) nem, aparentemente, com as condições nutritivas da água. A análise de componentes principais revelou que a PP e a taxa de assimilação foram mais elevadas na época do ano em que o conteúdo de PO4(3-) e N-NH4+ foi mais baixo e quando as razões Z EU/Z MIX foram mais elevadas. A produtividade primária/área pode ser estimada pela razão entre a produtividade volumétrica máxima e o coeficiente de extinção vertical da luz. Entretanto, a biomassa integrada na Z EU foi um pobre preditor da produtividade primária/área. Nenhuma correlação foi encontrada entre a temperatura da água com a produtividade primária (por área e volumétrica máxima). em conseqüência, o estudo da PP em três anos sucessivos mostrou que o padrão de variabilidade é tipicamente caótico. em relação às medidas de curta duração, maior PP foi encontrada na estação seca do que na chuvosa. em ambos os períodos, a variabilidade da PP (por área) foi de aproximadamente 35-40%. O padrão foi atribuído não somente à variação na concentração dos nutrientes mas também à magnitude de penetração de luz na água associado ao regime de circulação. Um comentário sobre a relação entre produção primária pelo fitoplâncton com produção pesqueira é também apresentada.
Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean
Resumo:
Depth-integrated primary productivity (PP) estimates obtained from satellite ocean color-based models (SatPPMs) and those generated from biogeochemical ocean general circulation models (BCGCMs) represent a key resource for biogeochemical and ecological studies at global as well as regional scales. Calibration and validation of these PP models are not straightforward, however, and comparative studies show large differences between model estimates. The goal of this paper is to compare PP estimates obtained from 30 different models (21 SatPPMs and 9 BOGCMs) to a tropical Pacific PP database consisting of similar to 1000 C-14 measurements spanning more than a decade (1983-1996). Primary findings include: skill varied significantly between models, but performance was not a function of model complexity or type (i.e. SatPPM vs. BOGCM); nearly all models underestimated the observed variance of PR specifically yielding too few low PP (< 0.2 g Cm-2 d(-1)) values; more than half of the total root-mean-squared model-data differences associated with the satellite-based PP models might be accounted for by uncertainties in the input variables and/or the PP data; and the tropical Pacific database captures a broad scale shift from low biomassnormalized productivity in the 1980s to higher biomass-normalized productivity in the 1990s, which was not successfully captured by any of the models. This latter result suggests that interdecadal and global changes will be a significant challenge for both SatPPMs and BOGCMs. Finally, average root-mean-squared differences between in situ PP data on the equator at 140 degrees W and PP estimates from the satellite-based productivity models were 58% lower than analogous values computed in a previous PP model comparison 6 years ago. The success of these types of comparison exercises is illustrated by the continual modification and improvement of the participating models and the resulting increase in model skill. (C) 2008 Elsevier BY. All rights reserved.
Resumo:
The performance of 36 models (22 ocean color models and 14 biogeochemical ocean circulation models (BOGCMs)) that estimate depth-integrated marine net primary productivity (NPP) was assessed by comparing their output to in situ (14)C data at the Bermuda Atlantic Time series Study (BATS) and the Hawaii Ocean Time series (HOT) over nearly two decades. Specifically, skill was assessed based on the models' ability to estimate the observed mean, variability, and trends of NPP. At both sites, more than 90% of the models underestimated mean NPP, with the average bias of the BOGCMs being nearly twice that of the ocean color models. However, the difference in overall skill between the best BOGCM and the best ocean color model at each site was not significant. Between 1989 and 2007, in situ NPP at BATS and HOT increased by an average of nearly 2% per year and was positively correlated to the North Pacific Gyre Oscillation index. The majority of ocean color models produced in situ NPP trends that were closer to the observed trends when chlorophyll-alpha was derived from high-performance liquid chromatography (HPLC), rather than fluorometric or SeaWiFS data. However, this was a function of time such that average trend magnitude was more accurately estimated over longer time periods. Among BOGCMs, only two individual models successfully produced an increasing NPP trend (one model at each site). We caution against the use of models to assess multiannual changes in NPP over short time periods. Ocean color model estimates of NPP trends could improve if more high quality HPLC chlorophyll-alpha time series were available.
Resumo:
Nearly half of the earth's photosynthetically fixed carbon derives from the oceans. To determine global and region specific rates, we rely on models that estimate marine net primary productivity (NPP) thus it is essential that these models are evaluated to determine their accuracy. Here we assessed the skill of 21 ocean color models by comparing their estimates of depth-integrated NPP to 1156 in situ C-14 measurements encompassing ten marine regions including the Sargasso Sea, pelagic North Atlantic, coastal Northeast Atlantic, Black Sea, Mediterranean Sea, Arabian Sea, subtropical North Pacific, Ross Sea, West Antarctic Peninsula, and the Antarctic Polar Frontal Zone. Average model skill, as determined by root-mean square difference calculations, was lowest in the Black and Mediterranean Seas, highest in the pelagic North Atlantic and the Antarctic Polar Frontal Zone, and intermediate in the other six regions. The maximum fraction of model skill that may be attributable to uncertainties in both the input variables and in situ NPP measurements was nearly 72%. on average, the simplest depth/wavelength integrated models performed no worse than the more complex depth/wavelength resolved models. Ocean color models were not highly challenged in extreme conditions of surface chlorophyll-a and sea surface temperature, nor in high-nitrate low-chlorophyll waters. Water column depth was the primary influence on ocean color model performance such that average skill was significantly higher at depths greater than 250 m, suggesting that ocean color models are more challenged in Case-2 waters (coastal) than in Case-1 (pelagic) waters. Given that in situ chlorophyll-a data was used as input data, algorithm improvement is required to eliminate the poor performance of ocean color NPP models in Case-2 waters that are close to coastlines. Finally, ocean color chlorophyll-a algorithms are challenged by optically complex Case-2 waters, thus using satellite-derived chlorophyll-a to estimate NPP in coastal areas would likely further reduce the skill of ocean color models.
Resumo:
Seasonal variation in the biomass and primary productivity of the periphyton on natural substratum (internodes of Echiiwchloa polystaclya HBK Hitch.) was studied during one year (from August 1993 to July 1994) in a lagoon with permanent connection with a river. We also analysed the relationships between the hydrological regime, climatic conditions and physico-chemical variables of water with the biological compounds of the periphyton. Values of dry mass, ash-free dry mass, chlorophyll a and phaeophytin of periphyton ranged from 0.55±0.24 g m-2 to 7.86±4.93 g m-2; 0.28±0.18 g m-2 to 3.72±2.23 g m-2; 0.57±0.09 mg m-2 to 15.57±4.52 mg m-2; 0.03±0.03 mg m-2 to 4.74±3.46 mg m-2, respectively. The primary productivity of periphytic algae measured by C14 method ranged from 6.45±1.29 mg C m-2 h-1 to 52.88± 7.55 mg C m-2 h-1. The biomass showed a peak in October 1993, February and April 1994. Higher value of primary productivity was recorded in December 1993 and January 1994 and was due to the peculiar light and nutrition conditions during this period. We conclude that biomass and productivity of the community are controlled mainly by hydrological regime (fluctuations of water level). © INTERNATIONAL SCIENTIFIC PUBLICATIONS.
Resumo:
The aim of this study was to analyze temporal ..d vertical variation of the biomass and of phytoplankton primary productivity in an urban eutrophic reservoir, in relation to the physical and chemical characteristics of the water. The physical and chemical variables of the water were defined in the limnetic region of the reservoir, at depths of 0.0; 0.5; 1.0; 2.0; 3.0 and 4.0 meters. Three samples were taken to define both the physical and chemical variables, concomitantly with the biomass (chlorophyll-a and phaeophytin) and phytoplankton primary productivity (C-14 method). Based on data obtained on differences in depth of the mixture zone and the euphotic zone, it is hypothesised that, depending on the time of the year, phytoplankton is conditioned by differences in the light and nutrient regimes, which change according to the constant loads of nutrients thrown into the system. The highest concentration of chlorophyll-a in the photic zone of the limnetic region was observed in November 2000 (1,197.3 mg Chl L -1) and the lowest in November 1999 (94.0 mg ChI L -1), whereas the profiles of primary activity of phytoplankton presented the highest rates on the surface of the water column, with values varying from 84.7 (May 2000) to 1,376.7mg C m -3 h -1 (December 2000). Annual primary productivity was calculated at 1,567.0gC m -2y -1, considered euproductive. The primary productivity profiles reported in this study are typical of aquatic eutrophic systems, rich in plankton and with low light penetration. It can be stated that Garças Lake is a system that suffers from anthropogenic impact, through receiving large loads of organic pollution, reflecting on the physical and chemical characteristics of the water and on the high values of biomass and primary phytoplankton activity. © National Institute of Ecology, New Delhi.