998 resultados para Preparação de arestas de corte e integridade superficial


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A retificação, processo final de usinagem de uma peça, utiliza fluidos de corte com a finalidade de lubrificação, refrigeração e remoção de cavacos. No entanto, esses fluidos são extremamente agressivos com o meio. Com o avanço tecnológico a tendência mundial é produzir peças cada vez mais sofisticadas, com elevado grau de tolerância geométrica, dimensional, com bom acabamento superficial, com baixo custo e, principalmente, sem causar danos ao meio. Para tanto, ao processo de retificação está intrínseca a reciclagem do fluido de corte, que se destaca pelo seu custo. Através da variação da velocidade de avanço no processo de retificação cilíndrica externa do aço ABNT D6, racionalizando a aplicação de dois fluidos de corte e usando um rebolo superabrasivo de CBN (nitreto de boro cúbico) com ligante vitrificado, avaliaram-se os parâmetros de saída da força tangencial de corte, emissão acústica, rugosidade, circularidade, desgaste da ferramenta, tensão residual e a integridade superficial através da microscopia eletrônica de varredura (MEV) dos corpos-de-prova. Com a análise do desempenho do fluido, do rebolo e da velocidade de mergulho, encontraram-se as melhores condições de usinagem propiciando a diminuição do volume de fluido de corte e a diminuição do tempo de usinagem, sem prejudicar os parâmetros geométricos e dimensionais, o acabamento superficial e a integridade superficial dos componentes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of composite materials and alternative is being increased every day, as it becomes more widespread awareness that the use of renewable and not harmful to the environment is part of a new environmentally friendly model. Since its waste (primarily fiberglass) can not be easily recycled by the difficulty that still exists in this process, since they have two phases mixed, a polymeric matrix thermoset difficult to recycle because it is infusible and phase of fiber reinforcements. Thermoset matrix composites like Polyester + fiberglass pose a threat due to excessive discharge. Aiming to minimize this problem, aimed to reuse the composite Polyester + fiber glass, through the wastes obtained by the grinding of knifes and balls. These residues were incorporated into the new composite Polyester/Fiberglass for hot compression mold and compared tribological to composites with filler CaCO3, generally used as filler, targeting a partial replacement of CaCO3 by such waste. The composites were characterized by thermal analysis (TGA, DSC and DMA), by the surface integrity (roughness determination, contact angle and surface energy), mechanical properties (hardness) and tribological tests (wear and coefficient of dynamic friction) in order to evaluate the effect of loads and characterize these materials for applications that can take, in the tribological point of view since waste Polyester + fiberglass has great potential for replacement of CaCO3

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In machining of internal threads, dedicated tools, known as taps, are needed for each profile type, diameter, and low cutting speed values are used when compared to main machining processes. This restriction in the cutting speed is associated with the difficulty of synchronizing the tool s rotation speed and feed velocity in the process. This fact restricts the flexibility and makes machining lead times longer when manufacturing of components with threads is required. An alternative to the constraints imposed by the tap is the thread milling with helical interpolation technique. The technique is the fusion of two movements: rotation and helical interpolation. The tools may have different configurations: a single edge or multiple edges (axial, radial or both). However, thread milling with helical interpolation technique is relatively new and there are limited studies on the subject, a fact which promotes challenges to its wide application in the manufacturing shop floor. The objective of this research is determine the performance of different types of tools in the thread milling with helical interpolation technique using hardened steel workpieces. In this sense, four tool configurations were used for threading milling in AISI 4340 quenched and tempered steel (40 HRC). The results showed that climb cut promoted a greater number of machined threads, regardless of tool configuration. The upcut milling causes chippings in cutting edge, while the climb cutting promotes abrasive wear. Another important point is that increase in hole diameter by tool diameter ratio increases tool lifetime

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The machining process is so much important in the economic world. Many machining parameters have been studied to maximize results, in terms of cost and lifetime. (decrease of cutting tool wear, improved surface finish, among others). The objective of this study is to evaluate the wear of a ceramic tool in the machining of the aluminum alloy 6005 A. The analysis of the wear of the cutting tools is very important due to its big impact on the final finishing of the piece as a whole. The evaluation took place in two stages, first it was done a detailed study of the literature of the whole machining process, where the study of the formation and swarf classification were among the most important steps in this phase. The second step consisted in the machining of the piece of aluminum 6005 A with a ceramic cutting tool constituded of aluminum oxide and magnesium oxide with silicon carbide impregnation. The swarf generated in this process was then photographed with a Zeiss optical microscope and analyzed for its size and shape. Through this comparison it was concluded that the swarf are generated shear swarfs, shaped like a tangled, fragmented and arcs connected, thus classifying the material as medium difficulty machining. Through the image analysis tool it was concluded that the parameter of lower wear was the: Vc = 500m / min, f = 0.10mm / rev and ap = 0.5mm

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machining is one of the most commonly manufacturing processes used in the modern world, consuming millions of dollars annually. Because of this, it is crucial for the automotive industry to reduce costs on their heat-resistant alloy machining processes, such as compacted graphite iron (CGI), which has shown an increasing trend of its application in diesel engine blocks, brakes disks, among other applications, due to its superior mechanical properties to gray cast iron. Despite this advantage, its use is still limited due to its difficulty of machining, moreover, cutting tools are displayed as the main factor in increasing the machining cost. Seeking an alternative to a better machinability of CGI, this paper aims to study two types of ceramic tools developed in Brazil, and benchmark their performance by dry turning. For this, were used CGI class 450 and two tools: ceramic of silicon nitride (Si3N4) and alumina-based (Al2O3), with a cutting speed (Vc) of 300, 400 and 500 m / min; feed (f) of 0.2 mm / rev and depth of cut (ap) of 0.5 mm, using three replicates and starting with new cutting edges. The results showed that the Al2O3 tool had the best performance in Vc of 500 m / min, while the Si3N4 tool had the best results in Vc of 300 m / min. This can be explained by the tool of Si3N4 based include soft intergranular phase, called amorphous, while alumina has higher abrasion resistance due to its high refractoriness. The results make it clear that the tools have significant potential for machining of compacted graphite iron, being necessary a strict control of the cutting parameters used

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The machining process is so much important in the economic world. Many machining parameters have been studied to maximize results, in terms of cost and lifetime. (decrease of cutting tool wear, improved surface finish, among others). The objective of this study is to evaluate the wear of a ceramic tool in the machining of the aluminum alloy 6005 A. The analysis of the wear of the cutting tools is very important due to its big impact on the final finishing of the piece as a whole. The evaluation took place in two stages, first it was done a detailed study of the literature of the whole machining process, where the study of the formation and swarf classification were among the most important steps in this phase. The second step consisted in the machining of the piece of aluminum 6005 A with a ceramic cutting tool constituded of aluminum oxide and magnesium oxide with silicon carbide impregnation. The swarf generated in this process was then photographed with a Zeiss optical microscope and analyzed for its size and shape. Through this comparison it was concluded that the swarf are generated shear swarfs, shaped like a tangled, fragmented and arcs connected, thus classifying the material as medium difficulty machining. Through the image analysis tool it was concluded that the parameter of lower wear was the: Vc = 500m / min, f = 0.10mm / rev and ap = 0.5mm

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machining is one of the most commonly manufacturing processes used in the modern world, consuming millions of dollars annually. Because of this, it is crucial for the automotive industry to reduce costs on their heat-resistant alloy machining processes, such as compacted graphite iron (CGI), which has shown an increasing trend of its application in diesel engine blocks, brakes disks, among other applications, due to its superior mechanical properties to gray cast iron. Despite this advantage, its use is still limited due to its difficulty of machining, moreover, cutting tools are displayed as the main factor in increasing the machining cost. Seeking an alternative to a better machinability of CGI, this paper aims to study two types of ceramic tools developed in Brazil, and benchmark their performance by dry turning. For this, were used CGI class 450 and two tools: ceramic of silicon nitride (Si3N4) and alumina-based (Al2O3), with a cutting speed (Vc) of 300, 400 and 500 m / min; feed (f) of 0.2 mm / rev and depth of cut (ap) of 0.5 mm, using three replicates and starting with new cutting edges. The results showed that the Al2O3 tool had the best performance in Vc of 500 m / min, while the Si3N4 tool had the best results in Vc of 300 m / min. This can be explained by the tool of Si3N4 based include soft intergranular phase, called amorphous, while alumina has higher abrasion resistance due to its high refractoriness. The results make it clear that the tools have significant potential for machining of compacted graphite iron, being necessary a strict control of the cutting parameters used

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Considerando que o Brasil e muitos outros países tropicais necessitam de aperfeiçoar métodos de recobrimento de taludes, tornam-se necessários estudos que aprimorem a utilização e a eficácia das diferentes alternativas do mercado. Este estudo teve como objetivo avaliar o desempenho das geomantas comerciais antierosivas MacMat®, Fibrax® e Tela Biotêxtil® na proteção do solo contra a erosão superficial hídrica. O experimento foi realizado em um talude em corte de estrada na cidade de Viçosa (MG), em meados de 2003, e foi avaliado entre dezembro e março de 2004. Para isso, realizou-se uma análise do escoamento superficial baseada em oito eventos chuvosos comparando-se as variáveis massa de sólidos e volume de suspensão de água + solo escoado em uma combinação de geomantas com ou sem vegetação (mistura de espécies de gramíneas e leguminosas). Os tratamentos testados foram: Tratamento 1 - testemunha (solo exposto); Tratamento 2 - Tela Biotêxtil® com plantas; Tratamento 3 - MacMat® sem plantas; Tratamento 4 - MacMat® com plantas; Tratamento 5 - Fibrax® sem plantas; e Tratamento 6 - Fibrax® com plantas. A análise estatística utilizada foi o teste de Tukey a 5 %. Embora não tenham sido encontradas diferenças significativas entre os tratamentos aplicados devido ao elevado coeficiente de variação, pode-se constatar que a utilização das mantas proporcionou a redução da perda de solos. O tratamento seis foi o mais eficiente para impedir a perda de solo. Entretanto, quando esta geomanta foi utilizada sem vegetação (Tratamento 5), permitiu o maior volume de suspensão escoada. Concluiu-se que as geomantas aumentaram a proteção do solo contra a erosão superficial hídrica e a incorporação de vegetação melhorou os resultados em todos os tratamentos.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fuel cells are attracting much interest as efficient and clean energy conversion devices. The main components of low temperature fuel cells are the electrocatalysts used to promote the anodic and cathodic reactions, which are based on platinum and platinum alloys. These electrocatalysts are normally prepared in the form of metal nanoparticles supported on a conductive material, usually high surface area carbon, to improve catalyst utilization and reduce cost. This work presents and comments some methods used presently to produce these electrocatalysts. The performances of the produced electrocatalysts are compared to that of state-of-the-art commercial E-TEK electrocatalysts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A área superficial de frangos de corte é importante parâmetro de entrada em modelos de transferência de calor e massa. Dessa forma, o presente trabalho teve o objetivo de desenvolver e validar modelo matemático empírico para estimar a área superficial (As) de frangos de corte. Para a realização desta pesquisa, foram utilizadas 84 aves de corte da linhagem Ross, sendo 37 machos e 47 fêmeas, com animais abrangendo todo o período da fase de criação. Em cada teste realizado em laboratório, uma ave, aleatoriamente selecionada, teve as suas dimensões (comprimento, largura e altura) e massa corporal avaliadas. A pele com penas da ave foi retirada para a determinação da As. Parte dos dados foi usada para ajuste da equação para a determinação da As e parte para a validação. Os resultados mostraram que a equação empírica para a determinação da As é estatisticamente significativa (P<0,0001) e apresenta coeficiente de determinação (r²) de 0,9886, sendo posteriormente validada pelo teste t (P>0,05).