984 resultados para Predator-pest interactions
Resumo:
Differences in the phoresy of the mites Macrocheles muscaedomesticae (Scopoli, 1972) (Macrochelidae) and Uroseius sp. (Polyaspidae) on the house fly, Musca domestica (Linnaeus, 1758) and the similarities in their phoretic dispersal and parasitism are discussed, altogether with the effects on predator-prey interactions. The prevalence and intensity of phoresy in the mite species were significantly related to the attachment site on the hosts. The phoresy of Uroseius sp. was correlated with temperature but not with rainfall and relative humidity. Selective pressure in the environment resulted in displacement and the emergence of local and regional populations. These results suggest that in each habitat the populations will use different resources and will show several relationships with other species, as well as a selection for morphological and behavioral types.
Resumo:
ABSTRACT Based on the hypothesis that diel vertical migration (DVM) is a mechanism of predator avoidance, the objective of the present study was to test for the occurrence of DVM in planktivorous fish larvae of Hypophthalmus edentatus (Spix, 1829) (Siluriformes, Pimelodidae) and Plagioscion squamosissimus (Heckel, 1840) (Perciformes, Sciaenidae), and zooplankton (rotifers, cladocerans and copepods) in an isolated tropical lagoon in the floodplain of the Upper Paraná River, Brazil (region of Parque Nacional de Ilha Grande). We investigated spatial overlap between predators (planktivorous fish larvae) and prey (zooplankton), and tested which physical and chemical variables of the water are related to the DVM of the studied communities. We performed nocturnal (8:00 pm and 4:00 am) and diurnal sampling (8:00 am and 4:00 pm) in the limnetic region of the lagoon for six consecutive months, from October 2010 to March 2011, which comprises the reproductive period of the fish species analyzed. During the day the larvae tried to remain aggregated in the bottom of the lagoon, whereas at night they tried to disperse in the water column. Especially for cladocerans, the diel vertical migration is an important behavior to avoid predation larvae of H. edentatus and P. squamosissimus once decreased spatial overlap between secured and its potential predators, which corroborates the hypothesis that DVM is a mechanism of predator avoidance. Although significant correlations were observed between the abiotic factors and WMD of microcrustaceans at certain times of day, the effect of predation of fish larvae on zooplankton showed more important in this environment, because the small depth and isolation not allow great variation of abiotic factors seasonally and between strata the lagoon.
Resumo:
1. We investigated experimentally predation by the flatworm Dugesia lugubris on the snail Physa acuta in relation to predator body length and to prey morphology [shell length (SL) and aperture width (AW)]. 2. SL and AW correlate strongly in the field, but display significant and independent variance among populations. In the laboratory, predation by Dugesia resulted in large and significant selection differentials on both SL and AW. Analysis of partial effects suggests that selection on AW was indirect, and mediated through its strong correlation with SL. 3. The probability P(ij) for a snail of size category i (SL) to be preyed upon by a flatworm of size category j was fitted with a Poisson-probability distribution, the mean of which increased linearly with predator size (i). Despite the low number of parameters, the fit was excellent (r2 = 0.96). We offer brief biological interpretations of this relationship with reference to optimal foraging theory. 4. The largest size class of Dugesia (>2 cm) did not prey on snails larger than 7 mm shell length. This size threshold might offer Physa a refuge against flatworm predation and thereby allow coexistence in the field. 5. Our results are further discussed with respect to previous field and laboratory observations on P acuta life-history patterns, in particular its phenotypic variance in adult body size.
Resumo:
The effect of diet on barn owl (Tyto alba) breeding biology has been well studied in the temperate regions but not in the more arid Middle East. In temperate regions, barn owls are darker colored and mainly prey upon Cricetidae rodents, whereas in arid regions, they are lighter colored and prey to a larger degree upon Muridae rodents. In this study we analyzed the diet and breeding success of 261 barn owl pairs nesting in Israel. The reproductive success of barn owls declined from March to August, and fledged more young when they consumed a larger proportion of social voles (Microtus socialis guentheri). Although the diet of the lighter colored barn owls in Israel comprises more Muridae than that of the darker morphs in temperate regions, in both regions the number of barn owl young increases with an increased proportion of voles in the diet.
Resumo:
Projet réalisé en cotutelle avec Jacques Brodeur et Les Shipp
Resumo:
Some organisms can manipulate the nervous systems of others or alter their physiology in order to obtain benefit. Ants are known to limit alate aphid dispersal by physically removing wings and also through chemical manipulation of the alate developmental pathway. This results in reduced dispersal and higher local densities of aphids, which benefit ants in terms of increased honeydew and prey availability. Here, we show that the walking movement of mutualistic apterous aphids is also reduced by ant semiochemicals. Aphids walk slower and their dispersal from an unsuitable patch is hampered by ants. If aphid walking dispersal has evolved as a means of natural enemy escape, then ant chemicals may act as a signal indicating protection; hence, reduced dispersal could be adaptive for aphids. If, however, dispersal is primarily a means to reduce competition or to maintain persistent metapopulations, then manipulation by ants could be detrimental. Such manipulation strategies, common in host-parasite and predator-prey interactions, may be more common in mutualism than expected.
Resumo:
Question: What are the life-history costs for a predatory insect of surviving parasitoid attack, and can parasitoid attack alter predator-prey interactions? Hypotheses: Survivorship is influenced by host age. Hosts that suffer parasitoid attack grow more slowly and consume fewer prey. Those that survive attack are smaller as adults and show reduced survivorship. Organisms: The aphidophagous hoverfly Episyrphus balteatus, its endoparasitoid wasp Diplazon laetatorius and its prey, the pea aphid, Acyrthosiphon pisum. Site of experiments: All experiments were conducted in controlled temperature rooms and chambers in the laboratory. Methods: Episyrphus balteatus larvae of each instar were exposed to attack by Diplazon laetatorius, then dissected to measure the encapsulation response (a measure of immunity). Second instar larvae were either attacked or not attacked by D. laetatorius. Their development rates and numbers of prey consumed were noted. The size and survivorship of surviving (immune) and control hoverflies were compared following eclosion. Conclusions: Successful immune response increased with larval age (first instar 0%, second instar 40%, third instar 100% survival). Second instar larvae that successfully resisted parasitoid attack were larger as pupae (but not as adults) and showed reduced adult survivorship. Female adult survivors were more likely than male survivors to have died within 16 days of eclosion, but there was no difference between unattacked male and female control hoverflies. Attacked larvae, irrespective of immune status, consumed fewer aphids than unattacked individuals. Episyrphus balteatus suffers significant costs of resisting parasitoid attack, and parasitoid attack can reduce the top-down effects of an insect predator, irrespective of whether the host mounts an immune response or not.
Resumo:
The mobile component of a community inhabiting a submarine boulder scree/cliff was investigated at Lough Hyne, Ireland at dawn, midday, dusk and night over a 1-week period. Line transects (50 m) were placed in the infralittoral (6 m) and circumlittoral (18 m) zones and also the interface between these two zones (12 m). The dominant mobile fauna of this cliff consisted of echinoderms (6 species), crustaceans (10 species) and fish (23 species). A different component community was identified at each time/depth interval using Multi-Dimensional Scaling (MDS) even though both species diversity (Shannon-Wiener indices) and richness (number of species) remained constant. These changes in community composition provided indirect evidence for migration by these mobile organisms. However, little evidence was found for migration between different zones with the exception of the several wrasse species. These species were observed to spend the daytime foraging in the deeper zone, but returned to the upper zone at night presumably for protection from predators. For the majority of species, migration was considered to occur to cryptic habitats such as holes and crevices. The number of organisms declined during the night, although crustacean numbers peaked, while fish and echinoderms were most abundant during day, possibly due to predator-prey interactions. This submarine community is in a state of flux, whereby, community characteristics, including trophic and energetic relationships, varied over small temporal (daily) and spatial (m) scales.
Resumo:
A adição de óleos à calda de pulverização, muitas vezes, é utilizada a campo sem o adequado conhecimento sobre a absorção do produto fitossanitário pelo alvo, retenção de calda e até mesmo sobre a praga e a cultura. O objetivo do trabalho foi avaliar o efeito da adição de óleos ao acaricida cyhexatin sobre o ácaro Brevipalpus phoenicis e na retenção de calda por folhas de citros. Avaliou-se a mortalidade de ácaros, utilizando-se de frutos de laranja com uma arena circundada com cola entomológica para confinar os ácaros. Adotou-se o delineamento inteiramente casualizado, em esquema fatorial, constituído pelos fatores: duas formulações de cyhexatin (WG e SC), dois tipos de óleo (mineral e vegetal) e duas concentrações dos óleos (0,5 e 1,0%), e mais dois tratamentos adicionais (acaricidas não adicionados de óleo) e uma testemunha sem aplicação. A aplicação dos produtos foi realizada sobre frutos de laranja até além do ponto de escorrimento. Logo após a aplicação, transferiram-se 10 ácaros B. phoenicis para cada fruto.A contagem dos ácaros vivos, mortos e retidos na barreira adesiva foi realizada um dia após a aplicação. Para a determinação da quantidade de calda retida, utilizaram-se folhas de laranjeira, que foram pulverizadas até além do ponto de escorrimento, adotando-se os mesmos tratamentos e o delineamento estatístico mencionados para a avaliação da mortalidade de ácaros, com exceção da testemunha sem aplicação. Determinou-se a massa de líquido retido após a aplicação dos produtos por folha, com auxílio de balança de precisão. Verificou-se que um dia após a aplicação dos produtos, todos os tratamentos apresentaram mortalidade de B. phoenicis acima de 99%. Dessa forma, a adição de óleo, seja mineral, seja vegetal, ao acaricida cyhexatin não afetou a eficácia biológica deste acaricida nas formulações SC e WG. A maior fuga de B. phoenicis para a barreira de cola foi verificada nos tratamentos com adição de óleos, em comparação ao cyhexatin aplicado isoladamente. A adição de óleo, seja mineral, seja vegetal, ao cyhexatin na calda de pulverização reduziu a quantidade máxima de líquido retido pelas folhas de citros, podendo contribuir para a redução da quantidade de calda necessária para uma boa cobertura da planta.
Resumo:
We investigated whether or not different degrees of refuge for prey influence the characteristic of functional response exhibited by the spider Nesticodes rufipes on Musca domestica, comparing the inherent ability of N. rufipes to kill individual houseflies in such environments at two distinct time intervals. To investigate these questions, two artificial habitats were elaborated in the laboratory. For 168 h of predator-prey interaction, logistic regression analyses revealed a type 11 functional response, and a significant decrease in prey capture in the highest prey density was observed when habitat complexity was increased. Data from habitat 1 (less complex) presented a greater coefficient of determination than those from habitat 2 (more complex), indicating a higher variation of predation of the latter. For a 24 h period of predator-prey interaction, spiders killed significantly fewer prey in habitat 2 than in habitat 1. Although prey capture did not enable data to fit properly in the random predator equation in this case, predation data from habitat 2 presented a higher variation than data from habitat 1, corroborating results from 168 h of interaction. The high variability observed on data from habitat 2 (more complex habitat) is an interesting result because it reinforces the importance of refuge in promoting spatial heterogeneity, which can affect the extent of predator-prey interactions.
Resumo:
The vertebrate predators of post-metamorphic anurans were quantified and the predator-prey relationship was investigated by analysing the relative size of invertebrate predators and anurans. More than 100 vertebrate predators were identified (in more than 200 reports) and classified as opportunistic, convenience, temporary specialized and specialized predators. Invertebrate predators were classified as solitary non-venomous, venomous and social foragers according to 333 reviewed reports. Each of these categories of invertebrate predators was compared with the relative size of the anurans, showing an increase in the relative size of the prey when predators used special predatory tactics. The number of species and the number of families of anurans that were preyed upon did not vary with the size of the predator, suggesting that prey selection was not arbitrary and that energetic constraints must be involved in this choice. The relatively low predation pressure upon brachycephalids was related to the presence of some defensive strategies of its species. This compounding review can be used as the foundation for future advances in vertebrate predator-prey interactions.
Resumo:
University of Tennessee, KnoxvilleNational Science Foundation (NSF)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Patterns of species interactions affect the dynamics of food webs. An important component of species interactions that is rarely considered with respect to food webs is the strengths of interactions, which may affect both structure and dynamics. In natural systems, these strengths are variable, and can be quantified as probability distributions. We examined how variation in strengths of interactions can be described hierarchically, and how this variation impacts the structure of species interactions in predator-prey networks, both of which are important components of ecological food webs. The stable isotope ratios of predator and prey species may be particularly useful for quantifying this variability, and we show how these data can be used to build probabilistic predator-prey networks. Moreover, the distribution of variation in strengths among interactions can be estimated from a limited number of observations. This distribution informs network structure, especially the key role of dietary specialization, which may be useful for predicting structural properties in systems that are difficult to observe. Finally, using three mammalian predator-prey networks ( two African and one Canadian) quantified from stable isotope data, we show that exclusion of link-strength variability results in biased estimates of nestedness and modularity within food webs, whereas the inclusion of body size constraints only marginally increases the predictive accuracy of the isotope-based network. We find that modularity is the consequence of strong link-strengths in both African systems, while nestedness is not significantly present in any of the three predator-prey networks.