994 resultados para Pre-strain


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titanium-nickel (Ti-Ni) shape memory alloys have been widely used for biomedical applications in recent years. However, it is reported that Ni is allergic and possibly carcinogenic for the human body. Therefore, it is desirable to develop new Ni-free Ti-based shape memory alloys for biomedical applications. In the present study, a new Ti-18Nb-5Mo-5Sn (wt.%) alloy, containing only biocompatible alloying elements, was designed with the aid of molecular orbital method and produced by vacuum arc melting. Both β and α″ martensitic phases were found to coexist in the alloy after ice-water quenching, indicating the martensitic transformation. The phase transformation temperatures of the Ti-18Nb-5Mo-5Sn alloy were Ms = 7.3 °C, Mf = −31.0 °C, As = 9.9 °C, and Af = 54.8 °C. Superelasticity was observed in the alloy at a temperature higher than the Af temperature. A totally recovered strain of 3.5 % was achieved for the newly designed Ti-based shape memory alloy with a pre-strain of 4 %.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of grain microstructure on the age-hardening behavior is investigated on recrystallized and un-recrystallized Al-Cu-Li alloys by combining electron-backscatter-diffraction and micro-hardness mapping. The spatial heterogeneity of micro-hardness is found to be strongly dependent on the grain microstructure. Controlled experiments are carried out to change the pre-strain before artificial ageing. These experiments lead to an evaluation of the range of local strain induced by pre-stretching as a function of the grain microstructure and results in heterogeneous formation of the hardening T1 precipitates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heterogeneous deformation developed during "static recrystallization (SRX) tests" poses serious questions about the validity of the conventional methods to measure softening fraction. The challenges to measure SRX and verify a proposed kinetic model of SRX are discussed and a least square technique is utilized to quantify the error in a proposed SRX kinetic model. This technique relies on an existing computational-experimental multi-layer formulation to account for the heterogeneity during the post interruption hot torsion deformation. The kinetics of static recrystallization for a type 304 austenitic stainless steel deformed at 900 °C and strain rate of 0.01s-1 is characterized implementing the formulation. Minimizing the error between the measured and calculated torque-twist data, the parameters of the kinetic model and the flow behavior during the second hit are evaluated and compared with those obtained based on a conventional technique. Typical static recrystallization distributions in the test sample will be presented. It has been found that the major differences between the conventional and the presented technique results are due to the heterogeneous recrystallization in the cylindrical core of the specimen where the material is still partially recrystallized at the onset of the second hit deformation. For the investigated experimental conditions, the core is confined in the first two-thirds of the gauge radius, when the holding time is shorter than 50 s and the maximum pre-strain is about 0.5.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

© 2015 Published by Elsevier Ltd. All rights reserved. Accurate static recrystallization (SRX) models are necessary to improve the properties of austenitic steels by thermo-mechanical operations. This relies heavily on a careful and accurate analysis of "the interrupted test data" and conversion of the heterogeneous deformation data to the flow stress. A "computational-experimental inverse method" was presented and implemented here to analyze the SRX test data, which takes into account the heterogeneous softening of the post-interruption test sample. Conventional and "inverse" methods were used to identify the SRX kinetics for a model austenitic steel deformed at 1273 K (with a strain rate of 1 s-1) using the hot torsion test assess the merits of each method. Typical "static recrystallization distribution maps" in the test sample indicated that, at the onset of the second pass deformation with less than a critical holding time and a given pre-strain, a "partially-recrystallized zone" existed in the cylindrical core of the specimen near its center line. For the investigated scenario, the core was confined in the first half of the gauge radius when the holding time and the maximum pre strain were below 29 s and 0.5, respectively. For maximum pre strains smaller than 0.2, the specimen did not fully recrystallize, even at the gauge surface after holding for 50 s. Under such conditions, the conventional methods produced significant error.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Roll forming is a continuous process in which a flat strip is incrementally bent to a desired profile. This process is increasingly used in automotive industry to form High Strength Steel (HSS) and Advanced High Strength Steel (AHSS) for structural components. Because of the large variety of applications of roll forming in the industry, Finite Element Analysis (FEA) is increasingly employed for roll forming process design. Formability and springback are two major concerns in the roll forming AHSS materials. Previous studies have shown that the elastic modulus (Young’s modulus) of AHSS materials can change when the material undergoes plastic deformation and the main goal of this study is to investigate the effect of a change in elastic modulus during forming on springback in roll forming. FEA has been applied for the roll forming simulation of a V-section using material data determined by experimental loading-unloading tests performed on mild, XF400, and DP780 steel. The results show that the reduction of the elastic modulus with pre-strain significantly influences springback in the roll forming of high strength steel while its effect is less when a softer steel is formed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work is dedicated to numerical prediction of the bending of thin aluminium alloy sheets, with a focus on the material parameter identification and the prediction of rupture with or without pre-strains in tension prior to bending. The experimental database consists of i) mechanical tests at room temperature, such as tension and simple shear, performed at several orientations to the rolling direction and biaxial tension ii) air bending tests of rectangular samples after (or not) pre-straining in tension. The mechanical model is composed of the Yld2004-18p anisotropic yield criterion (Barlat et al. [3]) associated with a mixed hardening rule. The material parameters (altogether 21) are optimized with an inverse approach, in order to minimize the gap between experimental data and model predictions. Then, the Hosford-Coulomb rupture criterion is used in an uncoupled way, and the parameters are determined from tensile tests, both uniaxial and biaxial, with data up to rupture. In a second step, numerical simulations of the bending tests are performed, either on material in its original state or after pre-straining in tension, with pre-strain magnitudes increasing from 0.19 up to 0.3. The comparisons are performed on different outputs: load evolution, strain field and prediction of the rupture. A very good correlation is obtained over all the tests, in the identification step as well as in the validation one. Moreover, the fracture criterion proves to be successful whatever the amount of pre-strain may be. A convincing representation of the mechanical behavior at room temperature for an aluminium alloy is thus obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Iterative computational models have been used to investigate the regulation of bone fracture healing by local mechanical conditions. Although their predictions replicate some mechanical responses and histological features, they do not typically reproduce the predominantly radial hard callus growth pattern observed in larger mammals. We hypothesised that this discrepancy results from an artefact of the models’ initial geometry. Using axisymmetric finite element models, we demonstrated that pre-defining a field of soft tissue in which callus may develop introduces high deviatoric strains in the periosteal region adjacent to the fracture. These bone-inhibiting strains are not present when the initial soft tissue is confined to a thin periosteal layer. As observed in previous healing models, tissue differentiation algorithms regulated by deviatoric strain predicted hard callus forming remotely and growing towards the fracture. While dilatational strain regulation allowed early bone formation closer to the fracture, hard callus still formed initially over a broad area, rather than expanding over time. Modelling callus growth from a thin periosteal layer successfully predicted the initiation of hard callus growth close to the fracture site. However, these models were still susceptible to elevated deviatoric strains in the soft tissues at the edge of the hard callus. Our study highlights the importance of the initial soft tissue geometry used for finite element models of fracture healing. If this cannot be defined accurately, alternative mechanisms for the prediction of early callus development should be investigated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Strain and temperature sensitivities of a type I Bragg grating inscribed in a germania doped silica fiber, fabricated under normal conditions and zero strain, are compared with that of a Bragg grating inscribed under pre-strained condition. The results obtained reveal that the strain and temperature sensitivities of the two gratings are different. Based on these results, we demonstrate a technique which enables discrimination of strain and temperature in a Fiber Bragg Grating (FBG) with a linear response. The present technique allows for an easy implementation of the sensor by providing a direct access to the grating region in the fiber and demands only a simple interrogation system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of test method factors (notch shape, square or angular, and pre-cracking method, by tapping onto or pressing a razor blade) on the results obtained in plane strain fracture toughness test according to standard ASTM D5045 using SENB specimens made of a commercial PMMA resin were investigated. Results were analyzed quantitatively by comparing the obtained K-IC values and qualitatively by observing their effect on the Moire fringes observed using photoelasticity, showing that, at 95% significance level, the K-IC values are affected by the pre-cracking method, with the most conservative value being obtained when natural pre-cracks were introduced by tapping onto a razor blade (K-IC = 1.15 +/- 0.11 MPa.m(0.5)). This correlates with a perturbation in the stress field close to the pre-crack tip observed in the photoelasticity test sample when it was introduced by pressing the razor blade. Surprisingly, notch geometry only slightly affects the results. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When exposed to high levels of strain, polymer optical fibre grating sensors recorded in poly(methyl methacrylate) based fibre often exhibit hysteresis in the response of their Bragg wavelength to strain. We demonstrate that the application of pre-tension and annealing of the polymer fibre can reduce this hysteresis when the fibre is suspended freely between two supports, but much better performance is obtained when the sensor is attached directly to a substrate. In this case, the hysteresis can be lessened by more than a factor of 12. © 2014 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A critical aspect of the debate about work integrated learning in the university context is the blurring of boundaries and responsibilities in terms of student learning. In an Australian pre-service teacher education program this blurring of boundaries is apparent in stakeholder tensions about the nature and role of assessment during the practicum. In the study reported in this paper, students responded positively to the content of assessment tasks but maintained that their efforts to implement the associated planning in the workplace were stymied because of disparate understandings between university and school staff about the purpose of the task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations have been employed to investigate the single-crystal Si properties with different pre-existing cavities under nanoindentation. Cavities with different radii and positions have been considered. It is found that pre-existing cavities in the Si substrate would obviously influence the mechanical properties of Si under nanoindentation. Furthermore, pre-existing cavities would absorb part of the strain energy during loading and then release during unloading. It would decrease plastic deformation to the substrate. Particularly, the larger of the cavity or the nearer of the cavity to the substrate’s top surface, the larger decrease of Young’s modulus and hardness is usually observed. Just as expected, the larger offset of the cavity in the lateral direction, the less influence is usually seen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives This study evaluated the heat strain experienced by armored vehicle officers (AVOs) wearing personal body armor (PBA) in a sub-tropical climate. Methods Twelve male AVOs, aged 35-58 years, undertook an eight hour shift while wearing PBA. Heart rate and core temperature were monitored continuously. Urine specific gravity (USG) was measured before and after, and with any urination during the shift. Results Heart rate indicated an intermittent and low-intensity nature of the work. USG revealed six AVOs were dehydrated from pre through post shift, and two others became dehydrated. Core temperature averaged 37.4 ± 0.3°C, with maximum's of 37.7 ± 0.2°C. Conclusions Despite increased age, body mass, and poor hydration practices, and Wet-Bulb Globe Temperatures in excess of 30°C; the intermittent nature and low intensity of the work prevented excessive heat strain from developing.