103 resultados para Pr3
Resumo:
In this work, GdAlO3:Pr3+ was successfully prepared by the Pechini method at lower temperatures when compared to others methods such as solid-state synthesis and sol-gel process. In accordance to the XRD data, the fully crystalline single-phase GdAlO3 could be obtained at 900 degrees C. Luminescence measurements indicate Gd -> Pr3+ energy transfer. In the emission spectra, the P-3(0) ->(3) H-4 (blue emission) and D-1(2) ->(3) H-4 (red emission) transitions of Pr3+ ions can be observed and the ratio between their intensities depends on the Pr3+ content due to the cross-relaxation phenomenon.
Resumo:
The effect of ytterbium ions upon energy transfer (ET) excited upconversion emission in Nd3+/Pr3+ -codoped PbGeO3-PbF2-CdF2 glass under 810 nm diode laser excitation is investigated. The results revealed that the presence of Yb3+ ions in the Nd3+/Pr3+-doped sample yields a fourfold enhancement in the visible and near infrared upconversion luminescence. The dependence of the upconversion process upon the excitation power, Nd3+, and Yb3+ concentrations is examined. The results indicated that ytterbium plays a major role in the ET upconversion process by bridging the 810nm neodymium excitation to praseodymium ions. The population of the Pr3+ ions P-3(0) emitting level was accomplished through a multi-ion interaction involving ground-state and excited-state absorption of pump photons at 810 nm by the Nd3+ followed by successive ET involving the Nd3+-Yb3+ and Yb3+-Pr3+ pairs. There is also direct ET Nd3+-Pr3+. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Infrared-to-visible upconversion emission enhancement through thermal effects in Yb3+-sensitized Pr3+-doped fluoroindate glasses excited at 1.064 mu m is investigated. A twentyfold increase in the 485 nm blue emission intensity as the sample temperature was varied from 20 to 260 degrees C was observed. The visible upconversion fluorescence enhancement is ascribed to the temperature dependent multiphonon-assisted anti-Stokes excitation of the ytterbium sensitizer and excited-state absorption of the praseodymium acceptor. A model based upon conventional rate equations considering a temperature dependent effective absorption cross section for the F-2(7/2)-->F-2(5/2) transition of the Yb3+ and (1)G(4)-->P-3(0) excited-state absorption of the Pr3+, agrees very well with the experimental results. (C) 2000 American Institute of Physics. [S0021-8979(00)08209-8].
Resumo:
Upconversion luminescence and thermal effects in Pr3+/Yb3+- and Er3+/Yb3+-codoped 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) tellurite glasses excited by CW infrared radiation at 1.064 mum is reported. Generation of intense green and red fluorescence emission in Er3+/Yb3+-codoped samples and appreciable upconversion luminescence in the wavelength region of 450-680 nm in Pr3+/Yb3+-codoped samples is observed. Temperature-induced enhancement of X12 in the upconversion efficiency in Er3+/Yb3+- and X10 in the Pr3+/Yb3+-doped samples is demonstrated. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work an analysis of the Judd-Ofelt phenomenological Ωλ intensity parameters for the Pr3+ ion in fluoroindate glass is made. Different Pr3+ concentrations, namely 1, 2, 3 and 4 mol% are used. The experimental oscillator strengths have been determined from the absorption spectra. A consistent set of parameters is obtained only with the inclusion of odd rank third order intensity parameters and if the band at 21 470 cm-1 is assigned to the 3H4 → 3P1 transition and the 1I6 component is incorporated in the 3H4 → 3P2 transition at 22 700 cm-1.
Resumo:
The efficiency of energy transfer (ET) between Pr3+ ions in a fluoroindate glass is determined. ET rates, WET, were determined for dilute samples and the results show a dependence of WET on the Pr3+ concentration. ET processes which contribute to resonance fluorescence and frequency upconversion emission were studied. The origin of the interaction energy among the Pr3+ ions was determined to be dipole - dipole. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Bright fluorescence in the visible range has been observed in Pr3+-Yb3+ doped fluoroindate glass under infrared diode laser irradiation. The mechanism which contributes for the upconversion emission is identified and the energy transfer rate between Pr3+-Yb3+ is obtained for different concentrations. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Blue and ultraviolet luminescence in (Pr3+, Gd3+) doped fluoroindate glass is studied for excitation in the red region (≈590 nm). Frequency upconversion (UC) is observed due to energy transfer (ET) among three Pr3+ ions initially excited to the D21 state corresponding to the ET process D21 + D21 + D21 → S01 + H53 + H53. Additionally, UC luminescence from states P 72 6 and I 72 6 of Gd3+ is observed for an excitation wavelength resonant with transitions of the Pr3+ ions. The characterization of the luminescence signals allowed to determine ET rate among the Pr3+ ions and provides evidence of interconfigurational ET between Gd3+ and Pr3+ ions. © 2006 American Institute of Physics.
Resumo:
We synthesize and study the properties of praseodymium doped fluoroindate glasses. Glass compositions with praseodymium molar concentrations up to 5% were obtained with good optical quality. Thermal, optical, and luminescence properties are investigated. Judd-Ofelt analysis is used to determine radiative lifetime and emission cross-section of the orange transition originating from the 3P0 level. We find that these glasses are good candidates for the realization of blue diode laser pumped orange lasers for quantum information processing applications. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Processes involving visible to infrared energy conversion are presented for Pr3+-Yb3+ co-doped fluoroindate glasses. The emission in the visible and infrared regions, the luminescence decay time of the Pr 3+:3P0 → 3H4 (482 nm), Pr3+:1D2 → 3H6 (800 nm), Yb3+:2F5/2 → 2F 7/2 (1044 nm) transitions and the photoluminescence excitation spectra were measured in Pr3+ samples and in Pr3+-Yb 3+ samples as a function of the Yb3+ concentration. In addition, energy transfer efficiencies were estimated from Pr3+: 3P0 and Pr3+:1D2 levels to Yb3+:2F7/2 level. Down-Conversion (DC) emission is observed due to a combination of two different processes: 1-a one-step cross relaxation (Pr3+:3P0 → 1G4; Yb3+:2F7/2 → 2F5/2) resulting in one photon emitted by Pr3+ (1G4 → 3H5) and one photon emitted by Yb3+ (2F7/2 → 2F5/2); 2-a resonant two-step first order energy transfer, where the first part of energy is transferred to Yb3+ neighbor through cross relaxation (Pr3+:3P0 → 1G4; Yb3+:2F7/2 → 2F5/2) followed by a second energy transfer step (Pr 3+:1G4 → 3H4; Yb3+:2F7/2 → 2F5/2). A third process leading to one IR photon emission to each visible photon absorbed involves cross relaxation energy transfer (Pr3+: 1D2 → 3F4; Yb 3+:2F7/2 → 2F5/2). © 2013 Elsevier B.V. All rights reserved.
Resumo:
Frequency upconversion (UC) processes involving energy transfer (ET) among Nd 3+ and Pr 3+ ions in a fluoroindate glass are reported. In a first experiment, the excitation of Pr 3+ [transition 3H 4→ 1D 2] and of Nd 3+ [transition 4I 9/2→( 2G 7/2+ 4G 5/2)] was achieved with a dye laser operating in the 575-590 nm range. In a second experiment, the Nd 3+ ions were excited with the second harmonic of a Nd: YAG laser at 532 nm. The ET processes leading to UC in both experiments were studied by monitoring the blue fluorescence decay at 480 nm due to the transition 3P 0→ 3H 4 in Pr 3+. In the more relevant UC process, quartets of ions (Nd-Nd-Pr-Pr) are excited due to absorption of three laser photons by two Nd 3+ ions which transfer their energy to two Pr 3+ ions. Each Pr 3+ ion promoted to the 3P 0 level decays to the ground state emitting one photon in the blue region. This conclusion was achieved investigating the dependence of the UC fluorescence intensity as a function of laser intensity, samples concentrations, and temporal behavior of the UC signal. Other UC processes involving nonisoionic groups of three ions are also reported. © 2002 American Institute of Physics.
Resumo:
IR-visible upconversion fluorescence spectroscopy and thermal effects in pr(3+)/Yb3+-codoped Ga2O3:La2S3 chalcogenide glasses excited at 1.064 mum is reported. Intense visible upconversion emission in the wavelength region of 480-680 nm peaked around 500, 550, 620 and 660 nm is observed. Upconversion excitation of the Pr3+ excited-state visible emitting levels is achieved by st combination of phonon-assisted absorption, energy-transfer and phonon-assisted excited-state absorption processes. A threefold upconversion emission enhancement induced by thermal effects when the codoped sample was heated in the temperature range of 20-200 degreesC is demonstrated. The thermal-induced enhancement is attributed to a multiphonon-assisted anti-Stokes process which takes place in the excitation of the ytterbium and excited-state absorption of the praseodymium. The thermal effect is modelled by conventional rate equations considering temperature-dependent effective absorption cross-sections for the F-2(7/2)-F-2(5/2) ytterbium transition and (1)G(4)-P-3(0) praseadymium excited-state absorption, and it is shown to agree very well with experimental results. Frequency upconversion in singly Pr3+-doped samples pumped at 836 nm and 1.064 mum in a two-beam configuration is also examined.
Resumo:
A high resolution luminescence study of NaLaF4: 1%Pr3+, 5%Yb3+ and NaLaF4: 1%Ce3+, 5%Yb3+ in the UV to NIR spectral range using a InGaAs detector and a fourier transform interferometer is reported. Although the Pr3+(P-3(0) -> (1)G(4), Yb3+(F-2(7/2) -> F-2(5/2)) energy transfer step takes place, significant Pr3+ (1)G(4) emission around 993, 1330 and 1850 nm is observed. No experimental proof for the second energy transfer step in the down-conversion process between Pr3+ and Yb3+ can be given. In the case of NaLaF4: Ce3+, Yb3+ it is concluded that the observed Yb3+ emission upon Ce3+ 5d excitation is the result of a charge transfer process instead of down-conversion. (C) 2010 Elsevier B.V. All rights reserved.