951 resultados para Power system stability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the effects of thyristor controlled series compensator (TCSC), a series FACTS controller, on the transient stability of a power system. Trajectory sensitivity analysis (TSA) has been used to measure the transient stability condition of the system. The TCSC is modeled by a variable capacitor, the value of which changes with the firing angle. It is shown that TSA can be used in the design of the controller. The optimal locations of the TCSC-controller for different fault conditions can also be identified with the help of TSA. The paper depicts the advantage of the use of TCSC with a suitable controller over fixed capacitor operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power system stabilizers (PSS) work well at the particular network configuration and steady state conditions for which they were designed. Once conditions change, their performance degrades. This can be overcome by an intelligent nonlinear PSS based on fuzzy logic. Such a fuzzy logic power system stabilizer (FLPSS) is developed, using speed and power deviation as inputs, and provides an auxiliary signal for the excitation system of a synchronous motor in a multimachine power system environment. The FLPSS's effect on the system damping is then compared with a conventional power system stabilizer's (CPSS) effect on the system. The results demonstrate an improved system performance with the FLPSS and also that the FLPSS is robust

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid growth of wind generation in many European countries is pushing power systems into
uncharted territory. As additional wind generators are installed, the changing generation mix may
impact on power system stability. This paper adopts the New England 39 bus system as a test
system for transient stability analysis. Thermal generator models are based on a likely future plant
mix for existing systems, while varying capacities of fixed-speed induction generators (FSIG) and
doubly-fed induction generators (DFIG) are considered. The main emphasis here has been placed
on the impact of wind technology mix on inter-area oscillations following transient grid
disturbances. In addition, both rotor angle stability and transient voltage stability are examined, and
results are compared with current grid code requirements and standards. Results have shown that
FSIGs can reduce tie-line oscillations and improve damping following a transient disturbance, but
they also cause voltage stability and rotor angle stability problems at high wind penetrations. In
contrast, DFIGs can improve both voltage and rotor angle stability, but their power output
noticeably oscillates during disturbances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of power system stability including the effects of a flexible alternating current transmission system (FACTS) is approached. First, the controlled series compensation is considered in the machine against infinite bar system and its effects are taken into account by means of construction of a Lyapunov function (LF). This simple system is helpful in order to understand the form the device affects dynamic and transient performance of the power system. After, the multimachine case is considered and it is shown that the single-machine results apply to multimachine systems. An energy-form Lyapunov function is derived for the power system including the FACTS device and it is used to analyse damping and synchronizing effects due to the FACTS device in single-machine as well as in multimachine power systems. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deregulations and market practices in power industry have brought great challenges to the system planning area. In particular, they introduce a variety of uncertainties to system planning. New techniques are required to cope with such uncertainties. As a promising approach, probabilistic methods are attracting more and more attentions by system planners. In small signal stability analysis, generation control parameters play an important role in determining the stability margin. The objective of this paper is to investigate power system state matrix sensitivity characteristics with respect to system parameter uncertainties with analytical and numerical approaches and to identify those parameters have great impact on system eigenvalues, therefore, the system stability properties. Those identified parameter variations need to be investigated with priority. The results can be used to help Regional Transmission Organizations (RTOs) and Independent System Operators (ISOs) perform planning studies under the open access environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To ensure the small-signal stability of a power system, power system stabilizers (PSSs) are extensively applied for damping low frequency power oscillations through modulating the excitation supplied to synchronous machines, and increasing interest has been focused on developing different PSS schemes to tackle the threat of damping oscillations to power system stability. This paper examines four different PSS models and investigates their performances on damping power system dynamics using both small-signal eigenvalue analysis and large-signal dynamic simulations. The four kinds of PSSs examined include the Conventional PSS (CPSS), Single Neuron based PSS (SNPSS), Adaptive PSS (APSS) and Multi-band PSS (MBPSS). A steep descent parameter optimization algorithm is employed to seek the optimal PSS design parameters. To evaluate the effects of these PSSs on improving power system dynamic behaviors, case studies are carried out on an 8-unit 24-bus power system through both small-signal eigenvalue analysis and large-signal time-domain simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power system operation and planning are facing increasing uncertainties especially with the deregulation process and increasing demand for power. Probabilistic power system stability assessment and probabilistic power system planning have been identified by EPRI as one of the important trends in power system operations and planning. Probabilistic small signal stability assessment studies the impact of system parameter uncertainties on system small disturbance stability characteristics. Researches in this area have covered many uncertainties factors such as controller parameter uncertainties and generation uncertainties. One of the most important factors in power system stability assessment is load dynamics. In this paper, composite load model is used to consider the uncertainties from load parameter uncertainties impact on system small signal stability characteristics. The results provide useful insight into the significant stability impact brought to the system by load dynamics. They can be used to help system operators in system operation and planning analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis was a step forward in developing probabilistic assessment of power system response to faults subject to intermittent generation by renewable energy. It has investigated the wind power fluctuation effect on power system stability, and the developed fast estimation process has demonstrated the feasibility for real-time implementation. A better balance between power network security and efficiency can be achieved based on this research outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two case studies are presented in this paper to demonstrate the impact of different power system operation conditions on the power oscillation frequency modes in the Irish power system. A simplified 2 area equivalent of the Irish power system has been used in this paper, where area 1 represents the Republic of Ireland power system and area 2 represents the Northern Ireland power system.

The potential power oscillation frequency modes on the interconnector during different operation conditions have been analysed in this paper. The main objective of this paper is to analyse the influence of different operation conditions involving wind turbine generator (WTG) penetration on power oscillation frequency modes using phasor measurement unit (PMU) data.

Fast Fourier transform (FFT) analysis was performed to identify the frequency oscillation mode while correlation coefficient analysis was used to determine the source of the frequency oscillation. The results show that WTG, particularly fixed speed induction generation (FSIG), gives significant contribution to inter-area power oscillation frequency modes during high WTG operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with the effects of the series compensation on the electric power system for small-signal stability studies. Therefore, the system is modeled admitting the existence of the compensation and then, the equations are linearized and a linear model is obtained for a single machine-infinite bus power system with a compensator installed. The resulting model with nine defined constants is very similar to the Heffron & Phillips linear model widely used on the existent literature. Finally, simulations are executed for an example system, to analyze the behavior of these constants when loading the system. © 2004 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents results of the validity study of the use of MATLAB/Simulink synchronous-machine block for power-system stability studies. Firstly, the waveforms of the theoretical synchronous-generator short-circuit currents are described. Thereafter, the comparison between the currents obtained through the simulation model in the sudden short-circuit test, are compared to the theoretical ones. Finally, the factory tests of two commercial generating units are compared to the response of the synchronous generator simulation block during sudden short-circuit, set with the same real data, with satisfactory results. This results show the validity of the use of this generator block for power plant simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bifurcation analysis is a very useful tool for power system stability assessment. In this paper, detailed investigation of power system bifurcation behaviour is presented. One and two parameter bifurcation analysis are conducted on a 3-bus power system. We also examined the impact of FACTS devices on power system stability through Hopf bifurcation analysis by taking static Var compensator (SVC) as an example. A simplified first-order model of the SVC device is included in the 3-bus sample system. Real and reactive powers are used as bifurcation parameter in the analysis to compare the system oscillatory properties with and without SVC. The simulation results indicate that the linearized system model with SVC enlarge the voltage stability boundary by moving Hopf bifurcation point to higher level of loading conditions. The installation of SVC increases the dynamic stability range of the system, however complicates the Hopf bifurcation behavior of the system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on the super/subsynchronous operation of the doubly fed induction generator (DFIG) system. The impact of a damping controller on the different modes of operation for the DFIG-based wind generation system is investigated. The coordinated tuning of the damping controller to enhance the damping of the oscillatory modes using bacteria foraging technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system. The robustness issue of the damping controller is also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on the implementation of a damping controller for the doubly fed induction generator (DFIG) system. Coordinated tuning of the damping controller to enhance the damping of the oscillatory modes is presented using bacterial foraging technique. The effect of the tuned damping controller on converter ratings of the DFIG system is also investigated. The results of both eigenvalue analysis and the time-domain simulation studies are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system. The improvement of the fault ride-through capability of the system is also demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on the super/sub-synchronous operation of the doubly fed induction generator (DFIG) system. The impact of a damping controller on the different modes of operation for the DFIG based wind generation system is investigated. The co-ordinated tuning of the damping controller to enhance the damping of the oscillatory modes using bacteria foraging (BF) technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system. The robustness issue of the damping controller is also investigated