794 resultados para Power engineering education


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustainability has emerged as a primary context for engineering education in the 21st Century, particularly the sub-discipline of chemical engineering. However, there is confusion over how to go about integrating sustainability knowledge and skills systemically within bachelor degrees. This paper addresses this challenge, using a case study of an Australian chemical engineering degree to highlight important practical considerations for embedding sustainability at the core of the curriculum. The paper begins with context for considering a systematic process for rapid curriculum renewal. The authors then summarise a 2-year federally funded project, which comprised piloting a model for rapid curriculum renewal led by the chemical engineering staff. Model elements contributing to the renewal of this engineering degree and described in this paper include: industry outreach; staff professional development; attribute identification and alignment; program mapping; and curriculum and teaching resource development. Personal reflections on the progress and process of rapid curriculum renewal in sustainability by the authors and participating engineering staff will be presented as a means to discuss and identify methodological improvements, as well as highlight barriers to project implementation. It is hoped that this paper will provide an example of a formalised methodology on which program reform and curriculum renewal for sustainability can be built upon in other higher education institutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the end of the first decade of the twenty-first century, there is unprecedented awareness of the need for a transformation in development, to meet the needs of the present while also preserving the ability of future generations to meet their own needs. However, within engineering, educators still tend to regard such development as an ‘aspect’ of engineering rather than an overarching meta-context, with ad hoc and highly variable references to topics. Furthermore, within a milieu of interpretations there can appear to be conflicting needs for achieving sustainable development, which can be confusing for students and educators alike. Different articulations of sustainable development can create dilemmas around conflicting needs for designers and researchers, at the level of specific designs and (sub-) disciplinary analysis. Hence sustainability issues need to be addressed at a meta-level using a whole of system approach, so that decisions regarding these dilemmas can be made. With this appreciation, and in light of curriculum renewal challenges that also exist in engineering education, this paper considers how educators might take the next step to move from sustainable development being an interesting ‘aspect’ of the curriculum, to sustainable development as a meta-context for curriculum renewal. It is concluded that capacity building for such strategic considerations is critical in engineering education.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recently released Mathematics, Engineering & Science in the National Interest report (May, 2012) highlights the universal perspective that an education in these disciplines is essential to a nation’s future prosperity. Although studies in STEM (Science, Technology, Engineering, Mathematics) are being implemented across many schools, progress to date has been slow especially with respect to incorporating engineering experiences in the middle and primary grades. Our concerns for the limited attention given to engineering in STEM and the low uptake of university engineering courses in universities, prompted us to conduct a longitudinal project on engineering education across grade levels 7-9.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on some findings from the first year of a three-year longitudinal study, in which seventh to ninth-graders were introduced to engineering education. Specifically, the paper addresses students’ responses to an initial design activity involving bridge construction, which was implemented at the end of seventh grade. This paper also addresses how students created their bridge designs and applied these in their bridge constructions; their reflections on their designs; their reflections on why the bridge failed to support increased weights during the testing process; and their suggestions on ways in which they would improve their bridge designs. The present findings include identification of six, increasingly sophisticated levels of illustrated bridge designs, with designs improving between the classroom and homework activities of two focus groups of students. Students’ responses to the classroom activity revealed a number of iterative design processes, where the problem goals, including constraints, served as monitoring factors for students’ generation of ideas, design thinking and construction of an effective bridge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND There is little doubt that our engineering graduates’ ability to identify cultural differences and their potential to impact on engineering projects, and to work effectively with these differences is of key importance in the modern engineering practice. Within engineering degree programs themselves there is also a significant need to recognise the impact of changing student and staff profiles on what happens in the classroom. The research described in this paper forms part of a larger project exploring issues of intercultural competence in engineering. PURPOSE This paper presents an observational and survey study of undergraduate and postgraduate engineering students from four institutions working in groups on tasks with a purely technical focus, or with a cultural and humanitarian element. The study sought to explore how students rate their own intercultural competence and team process and whether any differences exist depending on the nature of the task they are working on. We also investigated whether any differences were evident between groups of first year, second year and postgraduate students. DESIGN/METHOD The study used the miniCQS instrument (Ang & Van Dyne, 2008) and a Bales Interaction Process Analysis based scale (Bales, 1950; Carney, 1976) to collect students self ratings of group process, task management, and cultural experience and behaviour. The Bales IPA was also used for coding video observations of students working in groups. Survey data were used to form descriptive variables to compare outcomes across the different tasks and contexts. Observations analysed in Nvivo were used to provide commentary and additional detail on the quantitative data. RESULTS The results of the survey indicated consistent mean scores on each survey item for each group of students, despite vastly different tasks, student backgrounds and educational contexts. Some small, statistically significant mean differences existed, offering some basic insights into how task and student group composition could affect self ratings. Overall though, the results suggest minimal shift in how students view group function and their intercultural experience, irrespective of differing educational experience. CONCLUSIONS The survey results, contrasted with group observations, indicate that either students are not translating their experience (in the group tasks) into critical self assessment of their cultural competence and teamwork, or that they become more critical of team performance and cultural competence as their competence in these areas grows, so their ratings remain consistent. Both outcomes indicate that students need more intensive guidance to build their critical self and peer assessment skills in these areas irrespective of their year level of study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the end of the first decade of the twenty-first century, there is unprecedented awareness of the need for a transformation in development, to meet the needs of the present while also preserving the ability of future generations to meet their own needs. However, within engineering, educators still tend to regard such development as an ‘aspect’ of engineering rather than an overarching meta-context, with ad hoc and highly variable references to topics. Furthermore, within a milieu of interpretations there can appear to be conflicting needs for achieving sustainable development, which can be confusing for students and educators alike. Different articulations of sustainable development can create dilemmas around conflicting needs for designers and researchers, at the level of specific designs and (sub-) disciplinary analysis. Hence sustainability issues need to be addressed at a meta-level using a whole of system approach, so that decisions regarding these dilemmas can be made. With this appreciation, and in light of curriculum renewal challenges that also exist in engineering education, this paper considers how educators might take the next step to move from sustainable development being an interesting ‘aspect’ of the curriculum, to sustainable development as a meta-context for curriculum renewal. It is concluded that capacity building for such strategic considerations is critical in engineering education.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the end of the first decade of the twenty-first century, there is unprecedented awareness of the need for a transformation in development, to meet the needs of the present while also preserving the ability of future generations to meet their own needs. However, within engineering, educators still tend to regard such development as an ‘aspect’ of engineering rather than an overarching meta-context, with ad hoc and highly variable references to topics. Furthermore, within a milieu of interpretations there can appear to be conflicting needs for achieving sustainable development, which can be confusing for students and educators alike. Different articulations of sustainable development can create dilemmas around conflicting needs for designers and researchers, at the level of specific designs and (sub-) disciplinary analysis. Hence sustainability issues need to be addressed at a meta-level using a whole of system approach, so that decisions regarding these dilemmas can be made. With this appreciation, and in light of curriculum renewal challenges that also exist in engineering education, this paper considers how educators might take the next step to move from sustainable development being an interesting ‘aspect’ of the curriculum, to sustainable development as a meta-context for curriculum renewal. It is concluded that capacity building for such strategic considerations is critical in engineering education.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, many sectors across society are recognising the need to swiftly reduce their growing energy demand, as well as meeting remaining demand with low emissions options. A key ingredient to addressing such issues is equipping professionals – in particular engineers – with emerging energy efficiency knowledge and skills. This paper responds to an identified engineering education gap in Australia, by investigating options to increase energy efficiency content for both undergraduate and postgraduate engineers. The authors summarise the findings of the multi-stage methodology funded by the National Framework for Energy Efficiency (2008-2009), highlighting identified key barriers and benefits to such curriculum renewal. The findings are intended for use by engineering departments, accreditation agencies, professional bodies and government, to identify opportunities for moving forward based on rigorous research, and then to strategically plan the transition. This process, focused on energy efficiency, may also provide valuable parallels for a range of sustainable engineering related topics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Literature from around the world clearly suggests that engineering education has been relatively slow to incorporate significant knowledge and skill areas, including the rapidly emerging area of sustainable development. Within this context, this paper presents the findings of research that questioned how engineering educators could consistently implement systematic and intentional curriculum renewal that is responsive to emerging engineering challenges and opportunities. The paper presents a number of elements of systematic and intentional curriculum renewal that have been empirically distilled from a qualitative multiple-method iterative research approach including literature review, narrative enquiry, pilot trials and peer-review workshops undertaken by the authors with engineering educators from around the world. The paper also presents new knowledge arising from the research, in the form of a new model that demonstrates a dynamic and deliberative mechanism for strategically accelerating for curriculum renewal efforts. Specifically the paper discusses implications of this model to achieve education for sustainable development, across all disciplines of engineering. It concludes with broader research and practice implications for the field of education research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the late 1980s there have been increasing calls around the world for embedding sustainability content throughout engineering curricula, particularly over the past decade. However in general there has been little by way of strategic or systematic integration within programs offered by higher education institutions(HEIs). Responding to a growing awareness towards the issues surrounding sustainability, a number of professional engineering institutions (PEIs) internationally have placed increasing emphasis on policies and initiatives relating to the role of engineering in addressing 21st Century challenges. This has resulted in some consideration towards integrating sustainable development into engineering curricula as envisaged by accreditation guidelines. This paper provides a global overview of such accreditation developments, highlighting emerging sustainability competencies (or ‘graduate attributes’) and places these in the context of relevant PEI declarations, initiatives, policies, codes of ethics and guideline publications. The paper concludes by calling for urgent action by PEIs, including strategic accreditation initiatives that promote timely curriculum renewal towards EESD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of a qualitative action-research inquiry into how a highly diverse cohort of post-graduate students could develop significant capacity in sustainable development within a single unit (course), in this case a compulsory component of four built environment masters programs. The method comprised applying threshold learning theory within the technical discipline of sustainable development, to transform student understanding of sustainable business practice in the built environment. This involved identifying a number of key threshold concepts, which once learned would provide a pathway to having a transformational learning experience. Curriculum was then revised, to focus on stepping through these targeted concepts using a scaffolded, problem-based-learning approach. Challenges included a large class size of 120 students, a majority of international students, and a wide span of disciplinary backgrounds across the spectrum of built environment professionals. Five ‘key’ threshold learning concepts were identified and the renewed curriculum was piloted in Semester 2 of 2011. The paper presents details of the study and findings from a mixed-method evaluation approach through the semester. The outcomes of this study will be used to inform further review of the course in 2012, including further consideration of the threshold concepts. In future, it is anticipated that this case study will inform a framework for rapidly embedding sustainability within curriculum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Science, technology, engineering and mathematics (STEM) has become an educational package emerging throughout the world (e.g. UK, China, US & Australia). Although science, technology and mathematics are taught in schools and engineering education occurs in universities, there appear to be few if any explicit engineering education programs in primary and junior secondary schools. A stronger inclusion of engineering education at these levels could assist students to make informed decisions about career opportunities in STEM-related fields. This paper suggests how engineering education can be integrated with other key learning areas such as English, mathematics, science, history and geography within the new Australian Curriculum.