924 resultados para Power electronics converters


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The educational kit was developed for power electronics and drives. The need and purpose of this kit is to train engineers with current technology of digital control in power electronics. The DSP is the natural choice as it is able to perform high speed calculations required in power electronics. The educational kit consists of a DSP platform using TI DSP TMS320C50 starter kit, an inverter and an induction machine-dc machine set. A set of experiments have been prepared so that DSP programming can be learned easily in a smooth fashion. Here the application presented is open loop V/F control of three phase induction using sine pulse width modulation technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Before installation, a voltage source converter is usually subjected to heat-run test to verify its thermal design and performance under load. For heat-run test, the converter needs to be operated at rated voltage and rated current for a substantial length of time. Hence, such tests consume huge amount of energy in case of high-power converters. Also, the capacities of the source and loads available in the research and development (R&D) centre or the production facility could be inadequate to conduct such tests. This paper proposes a method to conduct heat-run tests on high-power, pulse width modulated (PWM) converters with low energy consumption. The experimental set-up consists of the converter under test and another converter (of similar or higher rating), both connected in parallel on the ac side and open on the dc side. Vector-control or synchronous reference frame control is employed to control the converters such that one draws certain amount of reactive power and the other supplies the same; only the system losses are drawn from the mains. The performance of the controller is validated through simulation and experiments. Experimental results, pertaining to heat-run tests on a high-power PWM converter, are presented at power levels of 25 kVA to 150 kVA.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the steps and the challenges for implementing analytical, physics-based models for the insulated gate bipolar transistor (IGBT) and the PIN diode in hardware and more specifically in field programmable gate arrays (FPGAs). The models can be utilised in hardware co-simulation of complex power electronic converters and entire power systems in order to reduce the simulation time without compromising the accuracy of results. Such a co-simulation allows reliable prediction of the system's performance as well as accurate investigation of the power devices' behaviour during operation. Ultimately, this will allow application-specific optimisation of the devices' structure, circuit topologies as well as enhancement of the control and/or protection schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power electronic modules distinguish themselves from other modules by their high power operation. These modules are used extensively in high power application markets such as aerospace, automotive, industrial and traction and drives. This paper discusses typical packaging technologies for power electronics modules. It also discusses the latest results from a UK research project investigating the physics-of-failure approach to reliability analysis and predictions for power modules. An integrated design enviroment for incorporating of affects of uncertainty into the design environment was outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the reliability of power electronics modules. The approach taken combines numerical modeling techniques with experimentation and accelerated testing to identify failure modes and mechanisms for the power module structure and most importantly the root cause of a potential failure. The paper details results for two types of failure (i) wire bond fatigue and (ii) substrate delamination. Finite element method modeling techniques have been used to predict the stress distribution within the module structures. A response surface optimisation approach has been employed to enable the optimal design and parameter sensitivity to be determined. The response surface is used by a Monte Carlo method to determine the effects of uncertainty in the design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical modeling method for the prediction of the lifetime of solder joints of relatively large solder area under cyclic thermal-mechanical loading conditions has been developed. The method is based on the Miner's linear damage accumulation rule and the properties of the accumulated plastic strain in front of the crack in large area solder joint. The nonlinear distribution of the damage indicator in the solder joints have been taken into account. The method has been used to calculate the lifetime of the solder interconnect in a power module under mixed cyclic loading conditions found in railway traction control applications. The results show that the solder thickness is a parameter that has a strong influence on the damage and therefore the lifetime of the solder joint while the substrate width and the thickness of the baseplate are much less important for the lifetime

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimal design of a power electronics module isolation substrate is assessed using a combination of finite element structural mechanics analysis and response surface optimisation technique. Primary failure modes in power electronics modules include the loss of structural integrity in the ceramic substrate materials due to stresses induced through thermal cycling. Analysis of the influence of ceramic substrate design parameters is undertaken using a design of experiments approach. Finite element analysis is used to determine the stress distribution for each design, and the results are used to construct a quadratic response surface function. A particle swarm optimisation algorithm is then used to determine the optimal substrate design. Analysis of response surface function gradients is used to perform sensitivity analysis and develop isolation substrate design rules. The influence of design uncertainties introduced through manufacturing tolerances is assessed using a Monte-Carlo algorithm, resulting in a stress distribution histogram. The probability of failure caused by the violation of design constraints has been analyzed. Six geometric design parameters are considered in this work and the most important design parameters have been identified. Overall analysis results can be used to enhance the design and reliability of the component.