982 resultados para Power electronic converters


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is part of a project which aims to research the opportunities for the re-use of batteries after their primary use in low and ultra low carbon vehicles on the electricity grid system. One potential revenue stream is to provide primary/secondary/high frequency response to National Grid through market mechanisms via DNO's or Energy service providers. Some commercial battery energy storage systems (BESS) already exist on the grid system, but these tend to use costly new or high performance batteries. Second life batteries should be available at lower cost than new batteries but reliability becomes an important issue as individual batteries may suffer from degraded performance or failure. Therefore converter topology design could be used to influence the overall system reliability. A detailed reliability calculation of different single phase battery-to-grid converter interfacing schemes is presented. A suitable converter topology for robust and reliable BESS is recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is on variable-speed wind turbines with permanent magnet synchronous generator (PMSG). Three different drive train mass models and three different topologies for the power-electronic converters are considered. The three different topologies considered are respectively a matrix, a two-level and a multilevel converter. A novel control strategy, based on fractional-order controllers, is proposed for the wind turbines. Simulation results are presented to illustrate the behaviour of the wind turbines during a converter control malfunction, considering the fractional-order controllers. Finally, conclusions are duly drawn. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is about a PV system connected to the electric grid by power electronic converters, using classical PI controller. The modelling for the converters emulates the association of a DC-DC boost with a two-level power inverter (TwLI) or three-level power inverter (ThLI) in order to follow the performance of a testing experimental system. Pulse width modulation (PWMo) by sliding mode control (SMCo) associated with space vector modulation (SVMo) is applied to the boost and the inverter. The PV system is described by the five parameters equivalent circuit. Parameter identification and simulation studies are performed for comparison with the testing experimental system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on a PV system linked to the electric grid by power electronic converters, identification of the five parameters modeling for photovoltaic systems and the assessment of the shading effect. Normally, the technical information for photovoltaic panels is too restricted to identify the five parameters. An undemanding heuristic method is used to find the five parameters for photovoltaic systems, requiring only the open circuit, maximum power, and short circuit data. The I- V and the P- V curves for a monocrystalline, polycrystalline and amorphous photovoltaic systems are computed from the parameters identification and validated by comparison with experimental ones. Also, the I- V and the P- V curves under the effect of partial shading are obtained from those parameters. The modeling for the converters emulates the association of a DC-DC boost with a two-level power inverter in order to follow the performance of a testing commercial inverter employed on an experimental system. © 2015 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on a PV system linked to the electric grid by power electronic converters, identification of the five parameters modeling for photovoltaic systems and the assessment of the shading effect. Normally, the technical information for photovoltaic panels is too restricted to identify the five parameters. An undemanding heuristic method is used to find the five parameters for photovoltaic systems, requiring only the open circuit, maximum power, and short circuit data. The I–V and the P–V curves for a monocrystalline, polycrystalline and amorphous photovoltaic systems are computed from the parameters identification and validated by comparison with experimental ones. Also, the I–V and the P–V curves under the effect of partial shading are obtained from those parameters. The modeling for the converters emulates the association of a DC–DC boost with a two-level power inverter in order to follow the performance of a testing commercial inverter employed on an experimental system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El projecte s'ha centrat en el disseny i desenvolupament de laboratoris virtuals per a la docència del dispositius i mètodes de gestió d’energia. Això s’ha realitzat a dos nivells clarament diferenciats, el primer grup de laboratoris correspon als convertidors electrònics de potencia i el segon grup de laboratoris correspon a un conjunt de casos d’aplicacions concretes. En el primer grup es descriu el detall del funcionament dels diferents elements mentre que en el segon els descriuen les idees i conceptes bàsics de funcionament. Els laboratoris virtuals de convertidors electrònics de potència inclouen el convertidor elevador (boost), el convertidor reductor (buck), i convertidors acobladors magnèticament. Aquestes permeten estudiar el comportament dinàmica des d’un punt de vista commutat o bé promitjat, les aplicacions incorporen també la possibilitat de sintonitzar els controladors. Aquestes aplicacions han estat desenvolupades per ser un complement per les sessions de pràctiques presencials. Els laboratoris virtuals d’aplicacions, inclouen els sistema de transport metropolità, el vehicle híbrid i els sistemes de gestió de talls transitoris en el subministrament d’energia principalment. Aquestes laboratoris permeten introduir els estudiants de forma qualitativa en els diferents conceptes i tècniques emprades en els sistemes de generació, transport i transformació d’energia. Totes les aplicacions han estat desenvolupades emprant Easy JAVA Simulations, aquesta eina permet desenvolupar laboratoris multiplataforma fàcilment distribuïbles a través d’internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maximum realizable power throughput of power electronic converters may be limited or constrained by technical or economical considerations. One solution to this problemis to connect several power converter units in parallel. The parallel connection can be used to increase the current carrying capacity of the overall system beyond the ratings of individual power converter units. Thus, it is possible to use several lower-power converter units, produced in large quantities, as building blocks to construct high-power converters in a modular manner. High-power converters realized by using parallel connection are needed for example in multimegawatt wind power generation systems. Parallel connection of power converter units is also required in emerging applications such as photovoltaic and fuel cell power conversion. The parallel operation of power converter units is not, however, problem free. This is because parallel-operating units are subject to overcurrent stresses, which are caused by unequal load current sharing or currents that flow between the units. Commonly, the term ’circulatingcurrent’ is used to describe both the unequal load current sharing and the currents flowing between the units. Circulating currents, again, are caused by component tolerances and asynchronous operation of the parallel units. Parallel-operating units are also subject to stresses caused by unequal thermal stress distribution. Both of these problemscan, nevertheless, be handled with a proper circulating current control. To design an effective circulating current control system, we need information about circulating current dynamics. The dynamics of the circulating currents can be investigated by developing appropriate mathematical models. In this dissertation, circulating current models aredeveloped for two different types of parallel two-level three-phase inverter configurations. Themodels, which are developed for an arbitrary number of parallel units, provide a framework for analyzing circulating current generation mechanisms and developing circulating current control systems. In addition to developing circulating current models, modulation of parallel inverters is considered. It is illustrated that depending on the parallel inverter configuration and the modulation method applied, common-mode circulating currents may be excited as a consequence of the differential-mode circulating current control. To prevent the common-mode circulating currents that are caused by the modulation, a dual modulator method is introduced. The dual modulator basically consists of two independently operating modulators, the outputs of which eventually constitute the switching commands of the inverter. The two independently operating modulators are referred to as primary and secondary modulators. In its intended usage, the same voltage vector is fed to the primary modulators of each parallel unit, and the inputs of the secondary modulators are obtained from the circulating current controllers. To ensure that voltage commands obtained from the circulating current controllers are realizable, it must be guaranteed that the inverter is not driven into saturation by the primary modulator. The inverter saturation can be prevented by limiting the inputs of the primary and secondary modulators. Because of this, also a limitation algorithm is proposed. The operation of both the proposed dual modulator and the limitation algorithm is verified experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents novel simulation tools to assist the lecturers about learning processes on renewable energy sources, considering photovoltaic (PV) systems. The PV behavior, functionality and its interaction with power electronic converters are investigated in the simulation tools. The main PV output characteristics, I (current) versus V (voltage) and P (power) versus V (voltage), were implemented in the tools, in order to aid the users for the design steps. In order to verify the effectiveness of the developed tools the simulation results were compared with Matlab. Finally, a prototype was implemented with the purpose to compare the experimental results with the results from the proposed tools, validating its operational feasibility. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a technique to add flexibility in the control of power electronic converters. The power converter can function as an active power filter, as a local power source interface or perform both functions i. e. mitigate current disturbances and inject power into the grid simultaneously, configuring it as a multifunctional device. The main goal is to extract the full capability of the grid connected power electronic converter to achieve maximum benefits. To achieve this goal, the orthogonal current decomposition of the Conservative Power Theory is used. Each orthogonal current component is weighted by means of different compensation factors (k_i), which are set instantaneously and independently, in any percentage by means of the load performance factors (λ_i), providing an online flexibility in relation to compensation objectives. Finally, to validate the effectiveness and performance the proposed approach, simulations and experimental results are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With energy demands and costs growing every day, the need for improving energy efficiency in electrical devices has become very important. Research into various methods of improving efficiency for all electrical components will be a key to meet future energy needs. This report documents the design, construction, and testing of a research quality electric machine dynamometer and test bed. This test cell system can be used for research in several areas including: electric drives systems, electric vehicle propulsion systems, power electronic converters, load/source element in an AC Microgrid, as well as many others. The test cell design criteria, and decisions, will be discussed in reference to user functionality and flexibility. The individual power components will be discussed in detail to how they relate to the project, highlighting any feature used in operation of the test cell. A project timeline will be discussed, clearly stating the work done by the different individuals involved in the project. In addition, the system will be parameterized and benchmark data will be used to provide the functional operation of the system. With energy demands and costs growing every day, the need for improving energy efficiency in electrical devices has become very important. Research into various methods of improving efficiency for all electrical components will be a key to meet future energy needs. This report documents the design, construction, and testing of a research quality electric machine dynamometer and test bed. This test cell system can be used for research in several areas including: electric drives systems, electric vehicle propulsion systems, power electronic converters, load/source element in an AC Microgrid, as well as many others. The test cell design criteria, and decisions, will be discussed in reference to user functionality and flexibility. The individual power components will be discussed in detail to how they relate to the project, highlighting any feature used in operation of the test cell. A project timeline will be discussed, clearly stating the work done by the different individuals involved in the project. In addition, the system will be parameterized and benchmark data will be used to provide the functional operation of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolution of the traditional consumer in a power system to a prosumer has posed many problems in the traditional uni-directional grid. This evolution in the grid model has made it important to study the behaviour of microgrids. This thesis deals with the laboratory microgrid setup at the Munich School of Engineering, built to assist researchers in studying microgrids. The model is built in Dymola which is a tool for the OpenModelica language. Models for the different components were derived, suiting the purpose of this study. The equivalent parameters were derived from data sheets and other simulation programs such as PSCAD. The parameters were entered into the model grid and tested at steady state, firstly. This yielded satisfactory results that were similar to the reference results from MATPOWER power flow. Furthermore, fault conditions at several buses were simulated to observe the behaviour of the grid under these conditions. Recommendations for further developing this model to include more detailed models for components, such as power electronic converters, were made at the end of the thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the evaluation of different power electronic integrated converters suitable for photovoltaic applications, in order to reduce complexity and improve reliability. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. In this context, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems. Power decoupling, MPPT and Tri-State modulations are also considered. Finally, simulation and experimental results are presented and compared for the analyzed topologies. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulated Transformer Rectifier Units contain several power electronic boards to facilitate AC to DC power conversion. As these units become smaller, the number of devices on each board increases while their distance from each other decreases, making active cooling essential to maintaining reliable operation. Although it is widely accepted that liquid is a far superior heat transfer medium to air, the latter is still capable of yielding low device operating temperatures with proper heat sink and airflow design. The purpose of this study is to describe the models and methods used to design and build the thermal management system for one of the power electronic boards in a compact, high power regulated transformer rectifier unit. Maximum device temperature, available pressure drop and manufacturability were assessed when selecting the final design for testing. Once constructed, the thermal management system’s performance was experimentally verified at three different power levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multipulse rectifier topologies based on autoconnections are increasingly applied as interface stages between mains and power electronics converters. These topologies are attractive and cost-effective solutions for meeting the requirements of low total harmonic distortion of line current and high power factor. Furthermore, as only a small fraction of the total power required by the load is processed in the magnetic core, the overall resulting volume and weight are reduced. This paper proposes a mathematical analysis based on phasor diagrams that results in a single and general expression capable of unifying all delta and wye step-up or step-down autotransformer connections for 12-and 18-pulse ac-dc converters. The expression obtained allows the choice of a wide range of input/output voltage ratio for step-up or step-down autotransformer, and this general expression is also presented in a graphical form for each converter. Moreover, it simplifies the procedure for determining turn ratios and polarities for all windings of the autotransformer. A routine for easy and fast calculations is developed and validated by a design example. Finally, experimental results are presented along with comments on a 6-kW 220-V line voltage, 400-V rectified voltage, and 18-pulse delta-autoconnected prototype.