989 resultados para Power absorption


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Permittivity and conductivity studies of corn syrup in various concentrations are performed using coaxial cavity perturbation technique over a frequency range of 250 MHz–3000 MHz. The results are utilized to estimate relaxation time and dipole moments of the samples. The stability of the material over the variations of time is studied. The measured specific absorption rate of the material complies with the microwave power absorption rate of biological tissues. This suggests the feasibility of using corn syrup as a suitable, cost effective coupling medium for microwave breast imaging. The material can also be used as an efficient breast phantom in microwave breast imaging studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents possible selective current compensation strategies based on the Conservative Power Theory (CPT). This recently proposed theory, introduces the concept of complex power conservation under non-sinusoidal conditions. Moreover, the related current decompositions results in several current terms, which are associated with a specific physical phenomena (power absorption P, energy storage Q, voltage and current distortion D). Such current components are used in this work for the definition of different current compensators, which can be selective in terms of minimizing particular disturbing effects. The choice of one or other current component for compensation directly affects the sizing and cost of active and/or passive devices and it will be demonstrated that it can be done to attend predefined limits for harmonic distortion, unbalances and/or power factor. Single and three-phase compensation strategies will be discussed by means of the CPT Framework. Simulation and experimental results will be demonstrated in order to validate their performance. © 2009 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Magnetic hyperthermia is currently a clinical therapy approved in the European Union for treatment of tumor cells, and uses magnetic nanoparticles (MNPs) under time-varying magnetic fields (TVMFs). The same basic principle seems promising against trypanosomatids causing Chagas disease and sleeping sickness, given that the therapeutic drugs available have severe side effects and that there are drug-resistant strains. However, no applications of this strategy against protozoan-induced diseases have been reported so far. In the present study, Crithidia fasciculata, a widely used model for therapeutic strategies against pathogenic trypanosomatids, was targeted with Fe3O4 MNPs in order to provoke cell death remotely using TVMFs. Methods: Iron oxide MNPs with average diameters of approximately 30 nm were synthesized by precipitation of FeSO4 in basic medium. The MNPs were added to C. fasciculata choanomastigotes in the exponential phase and incubated overnight, removing excess MNPs using a DEAE-cellulose resin column. The amount of MNPs uploaded per cell was determined by magnetic measurement. The cells bearing MNPs were submitted to TVMFs using a homemade AC field applicator (f = 249 kHz, H = 13 kA/m), and the temperature variation during the experiments was measured. Scanning electron microscopy was used to assess morphological changes after the TVMF experiments. Cell viability was analyzed using an MTT colorimetric assay and flow cytometry. Results: MNPs were incorporated into the cells, with no noticeable cytotoxicity. When a TVMF was applied to cells bearing MNPs, massive cell death was induced via a nonapoptotic mechanism. No effects were observed by applying TVMF to control cells not loaded with MNPs. No macroscopic rise in temperature was observed in the extracellular medium during the experiments. Conclusion: As a proof of principle, these data indicate that intracellular hyperthermia is a suitable technology to induce death of protozoan parasites bearing MNPs. These findings expand the possibilities for new therapeutic strategies combating parasitic infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Motivation Thanks for a scholarship offered by ALma Mater Studiorum I could stay in Denmark for six months during which I could do physical tests on the device Gyro PTO at the Departmet of Civil Engineering of Aalborg University. Aim The goal of my thesis is an hydraulic evaluation of the device: Gyro PTO, a gyroscopic device for conversion of mechanical energy in ocean surface waves to electrical energy. The principle of the system is the application of the gyroscopic moment of flywheels equipped on a swing float excited by waves. The laboratory activities were carried out by: Morten Kramer, Jan Olsen, Irene Guaraldi, Morten Thøtt, Nikolaj Holk. The main purpose of the tests was to investigate the power absorption performance in irregular waves, but testing also included performance measures in regular waves and simple tests to get knowledge about characteristics of the device, which could facilitate the possibility of performing numerical simulations and optimizations. Methodology To generate the waves and measure the performance of the device a workstation was created in the laboratory. The workstation consist of four computers in each of wich there was a different program. Programs have been used : Awasys6, LabView, Wave lab, Motive optitrack, Matlab, Autocad Main Results Thanks to the obtained data with the tank testing was possible to make the process of wave analisys. We obtained significant wave height and period through a script Matlab and then the values of power produced, and energy efficiency of the device for two types of waves: regular and irregular. We also got results as: physical size, weight, inertia moments, hydrostatics, eigen periods, mooring stiffness, friction, hydrodynamic coefficients etc. We obtained significant parameters related to the prototype in the laboratory after which we scale up the results obtained for two future applications: one in Nissun Brending and in the North Sea. Conclusions The main conclusion on the testing is that more focus should be put into ensuring a stable and positive power output in a variety of wave conditions. In the irregular waves the power production was negative and therefore it does not make sense to scale up the results directly. The average measured capture width in the regular waves was 0.21 m. As the device width is 0.63 m this corresponds to a capture width ratio of: 0.21/0.63 * 100 = 33 %. Let’s assume that it is possible to get the device to produce as well in irregular waves under any wave conditions, and lets further assume that the yearly absorbed energy can be converted into electricity at a PTO-efficiency of 90 %. Under all those assumptions the results in table are found, i.e. a Nissum Bredning would produce 0.87 MWh/year and a North Sea device 85 MWh/year.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Near-infrared to UV and visible upconversion luminescence was observed in single-crystalline ZnO under an 800 nm infrared femtosecond laser irradiation. The optical properties of the crystal reveal that the UV and VIS emission band are due to the exciton transition (D0X) bound to neutral donors and the deep luminescent centers in ZnO, respectively. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to three-photon sequential band-to-band excitation and the VIS emission belongs to two-photon simultaneous defect-absorption induced luminescence. A saturation phenomenon and polarization-dependent effect are also observed in the upconversion process of ZnO. A very good optical power limiting performance at 800 nm has been demonstrated. The two- and three-photon absorption coefficients of ZnO crystal were measured to be 0.2018 cm GW(-1) and 7.102 x 10(-3) cm(3) GW(-2), respectively. The two- and three-photon cross sections were calculated to be 1.189 x 10(-51) cm(4) s and 1.040 x 10(-80) cm(6) s(2), respectively. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The three-photon absorption (3PA) properties of two thiophene-fluorene derivatives (abbreviated as MOTFTBr and ATFTBr) have been determined by using a Q-switched Nd:YAG laser pumped wish 38ps pulses at 1064nm in DMF. The measured 3PA cross-sections are 152x10(-78)cm(6)s(2) and 139x10(-78)cm(6)s(2), respectively. The optimized structures were obtained by AM1 calculations and the results indicate that these two molecules show nonplanar structures, and attaching different donors has different effects on the molecular structure. The charge density distributions during the excitation were also systematically studied by using AM1 method. In addition, an obvious optical power limiting effect induced by 3PA has been demonstrated for both derivatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many optical networks are limited in speed and processing capability due to the necessity for the optical signal to be converted to an electrical signal and back again. In addition, electronically manipulated interconnects in an otherwise optical network lead to overly complicated systems. Optical spatial solitons are optical beams that propagate without spatial divergence. They are capable of phase dependent interactions, and have therefore been extensively researched as suitable all optical interconnects for over 20 years. However, they require additional external components, initially high voltage power sources were required, several years later, high power background illumination had replaced the high voltage. However, these additional components have always remained as the greatest hurdle in realising the applications of the interactions of spatial optical solitons as all optical interconnects. Recently however, self-focusing was observed in an otherwise self-defocusing photorefractive crystal. This observation raises the possibility of the formation of soliton-like fields in unbiased self-defocusing media, without the need for an applied electrical field or background illumination. This thesis will present an examination of the possibility of the formation of soliton-like low divergence fields in unbiased self-defocusing photorefractive media. The optimal incident beam and photorefractive media parameters for the formation of these fields will be presented, together with an analytical and numerical study of the effect of these parameters. In addition, preliminary examination of the interactions of two of these fields will be presented. In order to complete an analytical examination of the field propagating through the photorefractive medium, the spatial profile of the beam after propagation through the medium was determined. For a low power solution, it was found that an incident Gaussian field maintains its Gaussian profile as it propagates. This allowed the beam at all times to be described by an individual complex beam parameter, while also allowing simple analytical solutions to the appropriate wave equation. An analytical model was developed to describe the effect of the photorefractive medium on the Gaussian beam. Using this model, expressions for the required intensity dependent change in both the real and imaginary components of the refractive index were found. Numerical investigation showed that under certain conditions, a low powered Gaussian field could propagate in self-defocusing photorefractive media with divergence of approximately 0.1 % per metre. An investigation into the parameters of a Ce:BaTiO3 crystal showed that the intensity dependent absorption is wavelength dependent, and can in fact transition to intensity dependent transparency. Thus, with careful wavelength selection, the required intensity dependent change in both the real and imaginary components of the refractive index for the formation of a low divergence Gaussian field are physically realisable. A theoretical model incorporating the dependence of the change in real and imaginary components of the refractive index on propagation distance was developed. Analytical and numerical results from this model are congruent with the results from the previous model, showing low divergence fields with divergence less than 0.003 % over the propagation length of the photorefractive medium. In addition, this approach also confirmed the previously mentioned self-focusing effect of the self-defocusing media, and provided an analogy to a negative index GRIN lens with an intensity dependent focal length. Experimental results supported the findings of the numerical analysis. Two low divergence fields were found to possess the ability to interact in a Ce:BaTiO3 crystal in a soliton-like fashion. The strength of these interactions was found to be dependent on the degree of divergence of the individual beams. This research found that low-divergence fields are possible in unbiased self-defocusing photorefractive media, and that soliton-like interactions between two of these fields are possible. However, in order for these types of fields to be used in future all optical interconnects, the manipulation of these interactions, together with the ability for these fields to guide a second beam at a different wavelength, must be investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This book examines different aspects of Asian popular culture, including films, TV, music, comedy, folklore, cultural icons, the Internet and theme parks. It raises important questions such as – What are the implications of popularity of Asian popular culture for globalization? Do regional forces impede the globalizing of cultures? Or does the Asian popular culture flow act as a catalyst or conveying channel for cultural globalization? Does the globalization of culture pose a threat to local culture? It addresses two seemingly contradictory and yet parallel processes in the circulation of Asian popular culture: the interconnectedness between Asian popular culture and western culture in an era of cultural globalization that turns subjects such as Pokémon, Hip Hop or Cosmopolitan into truly global phenomena, and the local derivatives and versions of global culture that are necessarily disconnected from their origins in order to cater for the local market. It thereby presents a collective argument that, whilst local social formations, and patterns of consumption and participation in Asia are still very much dependent on global cultural developments and the phenomena of modernity, yet such dependence is often concretized, reshaped and distorted by the local media to cater for the local market. Contents: Introduction: Asian Popular Culture: The Global (Dis)continuity Anthony Y.H. Fung Part 1: The Dominance of Global Continuity: Cultural Localization and Adaptation 1. One Region, Two Modernities: Disneyland in Tokyo and Hong Kong Micky Lee and Anthony Y.H. Fung 2. Comic Travels: Disney Publishing in the People’s Republic of China Jennifer Altehenger 3. When Chinese Youth Meet Harry Potter: Translating Consumption and Middle Class Identification John Nguyet Erni 4.New Forms of Transborder Visuality in Urban China: Saving Face for Magazine Covers Eric Kit-Wai Ma 5. Cultural Consumption and Masculinity: A Case Study of GQ Magazine Covers in Taiwan Hong-Chi Shiau Part 2: Global Discontinuity: The Local Absorption of Global Culture 6. An Unlocalized and Unglobalized Subculture: English Language Independent Music in Singapore Kai Khiun Liew and Shzr Ee Tan 7. The Localized Production of Jamaican Music in Thailand Viriya Sawangchot 8. Consuming Online Games in Taiwan: Global Games and Local Market Lai-Chi Chen 9. The Rise of the Korean Cinema in Inbound and Outbound Globalization Shin Dong Kim Part 3: Cultural Domestication: A New Form of Global Continuity 10. Pocket Capitalism and Virtual Intimacy: Pokémon as a Symptom of Post-Industrial Youth Culture Anne Allison 11. Playing the Global Game: Japan Brand and Globalization Kukhee Choo Part 4: China as a Rising Market: Cultural Antagonism and Globalization 12. China’s New Creative Strategy: The Utilization of Cultural Soft Power and New Markets Michael Keane and Bonnie Liu 13. Renationalizing Hong Kong Cinema: The Gathering Force of the Mainland Market Michael Curtin

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study Design: Comparative analysis Background: Calculations of lower limbs kinetics are limited by floor-mounted force-plates. Objectives: Comparison of hip joint moments, power and mechanical work on the prosthetic limb of a transfemoral amputee calculated by inverse dynamics using either the ground reactions (force-plates) or knee reactions (transducer). Methods: Kinematics, ground reactions and knee reactions were collected using a motion analysis system, two force-plates and a multi-axial transducer mounted below the socket, respectively. Results: The inverse dynamics using ground reactions under-estimated the peaks of hip energy generation and absorption occurring at 63 % and 76 % of the gait cycle (GC) by 28 % and 54 %, respectively. This method over-estimated a phase of negative work at the hip (from 37 %GC to 56 %GC) by 24%. It under-estimated the phases of positive (from 57 %GC to 72 %GC) and negative (from 73 %GC to 98 %GC) work at the hip by 11 % and 58%, respectively. Conclusions: A transducer mounted within the prosthesis has the capacity to provide more realistic kinetics of the prosthetic limb because it enables assessment of multiple consecutive steps and a wide range of activities without issues of foot placement on force-plates. CLINICAL RELEVANCE The hip is the only joint that an amputee controls directly to set in motion the prosthesis. Hip joint kinetics are associated with joint degeneration, low back pain, risks of fall, etc. Therefore, realistic assessment of hip kinetics over multiple gait cycles and a wide range of activities is essential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction and Objectives Joint moments and joint powers during gait are widely used to determine the effects of rehabilitation programs as well as prosthetic fitting. Following the definition of power (dot product of joint moment and joint angular velocity) it has been previously proposed to analyse the 3D angle between both vectors, αMw. Basically, joint power is maximised when both vectors are parallel and cancelled when both vectors are orthogonal. In other words, αMw < 60° reveals a propulsion configuration (more than 50% of the moment contribute to positive power) while αMw > 120° reveals a resistance configuration (more than 50% of the moment contribute to negative power). A stabilisation configuration (less than 50% of the moment contribute to power) corresponds to 60° < αMw < 120°. Previous studies demonstrated that hip joints of able-bodied adults (AB) are mainly in a stabilisation configuration (αMw about 90°) during the stance phase of gait. [1, 2] Individuals with transfemoral amputation (TFA) need to maximise joint power at the hip while controlling the prosthetic knee during stance. Therefore, we tested the hypothesis that TFAs should adopt a strategy that is different from a continuous stabilisation. The objective of this study was to compute joint power and αMw for TFA and to compare them with AB. Methods Three trials of walking at self-selected speed were analysed for 8 TFAs (7 males and 1 female, 46±10 years old, 1.78±0.08 m 82±13 kg) and 8 ABs (males, 25±3 years old, 1.75±0.04, m 67±6 kg). The joint moments are computed from a motion analysis system (Qualisys, Goteborg, Sweden) and a multi-axial transducer (JR3, Woodland, USA) mounted above the prosthetic knee for TFAs and from a motion analysis system (Motion Analysis, Santa Rosa, USA) and force plates (Bertec, Columbus, USA) for ABs. The TFAs were fitted with an OPRA (Integrum, AB, Gothengurg, Sweden) osseointegrated implant system and their prosthetic designs include pneumatic, hydraulic and microprocessor knees. Previous studies showed that the inverse dynamics computed from the multi-axial transducer is the proper method considering the absorption at the foot and resistance at the knee. Results The peak of positive power at loading response (H1) was earlier and lower for TFA compared to AB. Although the joint power is lower, the 3D angle between joint moment and joint angular velocity, αMw, reveals an obvious propulsion configuration (mean αMw about 20°) for TFA compared to a stabilisation configuration (mean αMw about 70°) for AB. The peaks of negative power at midstance (H2) and of positive power at preswing / initial swing (H3) occurred later, lower and longer for TFA compared to AB. Again, the joint powers are lower for TFA but, in this case, αMw is almost comparable (with a time lag), demonstrating a stabilisation (almost a resistance for TFA, mean αMw about 120°) and a propulsion configuration, respectively. The swing phase is not analysed in the present study. Conclusion The analysis of hip joint power may indicate that TFAs demonstrated less propulsion and resistance than ABs during the stance phase of gait. This is true from a quantitative point of view. On the contrary, the 3D angle between joint moment and joint angular velocity, αMw, reveals that TFAs have a remarkable propulsion strategy at loading response and almost a resistance strategy at midstance while ABs adopted a stabilisation strategy. The propulsion configuration, with αMw close to 0°, seems to aim at maximising the positive joint power. The configuration close to resistance, with αMw far from 180°, might aim at unlocking the prosthetic knee before swing while minimising the negative power. This analysis of both joint power and 3D angle between the joint moment and the joint angular velocity provides complementary insights into the gait strategies of TFA that can be used to support evidence-based rehabilitation and fitting of prosthetic components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, we report the growth of wurtzite InN epilayers on GaN/Si (1 1 1) substrate by plasma-assisted molecular beam epitaxy (PAMBE). The growth parameters such as indium flux, substrate temperature and RF power affect the crystallographic and morphological properties of InN layers, which were evaluated using high resolution X-ray diffraction (HRXRD) analysis and atomic force microscopy (AFM). It is found that excess indium (In) concentrations and surface roughness were increased with increase in In flux and growth temperature. The intensity of HRXRD (0 0 0 2) peak, corresponding to c-axis orientation has been increased and full width at half maxima (FWHM) has decreased with increase in RF power. It was found that highly c-axis oriented InN epilayers can be grown at 450 degrees C growth temperature, 450 W RF power and 1.30 x 10(-7) mbar In beam equivalent pressure (BEP). The energy gap of InN layers grown by optimizing growth conditions was determined by photoluminescence and optical absorption measurement. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) thin films were deposited onto p-Si substrates held at room temperature by reactive Direct Current (DC) magnetron sputtering at various sputter powers in the range 80-200W. The as-deposited TiO2 films were annealed at a temperature of 1023K. The post-annealed films were characterized for crystallographic structure, chemical binding configuration, surface morphology and optical absorption. The electrical and dielectric properties of Al/TiO2/p-Si structure were determined from the capacitance-voltage and current-voltage characteristics. X-ray diffraction studies confirmed that the as-deposited films were amorphous in nature. After post-annealing at 1023K, the films formed at lower powers exhibited anatase phase, where as those deposited at sputter powers >160W showed the mixed anatase and rutile phases of TiO2. The surface morphology of the films varied significantly with the increase of sputter power. The electrical and dielectric properties on the air-annealed Al/TiO2/p-Si structures were studied. The effect of sputter power on the electrical and dielectric characteristics of the structure of Al/TiO2/p-Si (metal-insulator-semiconductor) was systematically investigated. Copyright (c) 2014 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photoresponse of the graphene photodetector elucidated strong dependence on several optical parameters, such as the angle of incidence and the incident power of infrared exposure at room temperature. The sinusoidal dependence of the photoresponse on incidence angle, which had not been realized before, has now been revealed. The combined effect of the photo excited charge carrier and the photon drag effect explain this nonlinear optical absorption in graphene at lower incident power. The nonlinear dependence of the charge carrier generation on the incident power revealed that this process contributed to the nonlinear photoresponse. However, a deviation is observed at a higher incident power due to the induction of thermal effects in the graphene lattice. This work demonstrates the tunability of the graphene photodetector under a systematic variation that involves both parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a refined two-dimensional hybrid-model with self-consistent microwave absorption, we have investigated the change of plasma parameters such as plasma density and ionization rate with the operating conditions. The dependence of the ion current density and ion energy and angle distribution function at the substrate surface vs. the radial position, pressure and microwave power were discussed. Results of our simulation can be compared qualitatively with many experimental measurements.