910 resultados para Power Electronics Courses
Resumo:
Power electronic modules distinguish themselves from other modules by their high power operation. These modules are used extensively in high power application markets such as aerospace, automotive, industrial and traction and drives. This paper discusses typical packaging technologies for power electronics modules. It also discusses the latest results from a UK research project investigating the physics-of-failure approach to reliability analysis and predictions for power modules. An integrated design enviroment for incorporating of affects of uncertainty into the design environment was outlined.
Resumo:
This paper discusses the reliability of power electronics modules. The approach taken combines numerical modeling techniques with experimentation and accelerated testing to identify failure modes and mechanisms for the power module structure and most importantly the root cause of a potential failure. The paper details results for two types of failure (i) wire bond fatigue and (ii) substrate delamination. Finite element method modeling techniques have been used to predict the stress distribution within the module structures. A response surface optimisation approach has been employed to enable the optimal design and parameter sensitivity to be determined. The response surface is used by a Monte Carlo method to determine the effects of uncertainty in the design.
Resumo:
A numerical modeling method for the prediction of the lifetime of solder joints of relatively large solder area under cyclic thermal-mechanical loading conditions has been developed. The method is based on the Miner's linear damage accumulation rule and the properties of the accumulated plastic strain in front of the crack in large area solder joint. The nonlinear distribution of the damage indicator in the solder joints have been taken into account. The method has been used to calculate the lifetime of the solder interconnect in a power module under mixed cyclic loading conditions found in railway traction control applications. The results show that the solder thickness is a parameter that has a strong influence on the damage and therefore the lifetime of the solder joint while the substrate width and the thickness of the baseplate are much less important for the lifetime
Resumo:
Optimal design of a power electronics module isolation substrate is assessed using a combination of finite element structural mechanics analysis and response surface optimisation technique. Primary failure modes in power electronics modules include the loss of structural integrity in the ceramic substrate materials due to stresses induced through thermal cycling. Analysis of the influence of ceramic substrate design parameters is undertaken using a design of experiments approach. Finite element analysis is used to determine the stress distribution for each design, and the results are used to construct a quadratic response surface function. A particle swarm optimisation algorithm is then used to determine the optimal substrate design. Analysis of response surface function gradients is used to perform sensitivity analysis and develop isolation substrate design rules. The influence of design uncertainties introduced through manufacturing tolerances is assessed using a Monte-Carlo algorithm, resulting in a stress distribution histogram. The probability of failure caused by the violation of design constraints has been analyzed. Six geometric design parameters are considered in this work and the most important design parameters have been identified. Overall analysis results can be used to enhance the design and reliability of the component.
Resumo:
This paper describes a prognostic method which combines the physics of failure models with probability reasoning algorithm. The measured real time data (temperature vs. time) was used as the loading profile for the PoF simulations. The response surface equation of the accumulated plastic strain in the solder interconnect in terms of two variables (average temperature, and temperature amplitude) was constructed. This response surface equation was incorporated into the lifetime model of solder interconnect, and therefore the remaining life time of the solder component under current loading condition was predicted. The predictions from PoF models were also used to calculate the conditional probability table for a Bayesian Network, which was used to take into account of the impacts of the health observations of each product in lifetime prediction. The prognostic prediction in the end was expressed as the probability for the product to survive the expected future usage. As a demonstration, this method was applied to an IGBT power module used for aircraft applications.
Resumo:
A numerical modelling method for the analysis of solder joint damage and crack propagation has been described in this paper. The method is based on the disturbed state concept. Under cyclic thermal-mechanical loading conditions, the level of damage that occurs in solder joints is assumed to be a simple monotonic scalar function of the accumulated equivalent plastic strain. The increase of damage leads to crack initiation and propagation. By tracking the evolution of the damage level in solder joints, crack propagation path and rate can be simulated using Finite Element Analysis method. The discussions are focused on issues in the implementation of the method. The technique of speeding up the simulation and the mesh dependency issues are analysed. As an example of the application of this method, crack propagation in solder joints of power electronics modules under cyclic thermal-mechanical loading conditions has been analyzed and the predicted cracked area size after 3000 loading cycles is consistent with experimental results.
Resumo:
In this paper, computer modelling techniques are used to analyse the effects of globtops on the reliability of aluminium wirebonds in power electronics modules under cyclic thermal-mechanical loading conditions. The sensitivity of the wirehond reliability to the changes of the geometric and the material property parameters of wirebond globtop are evaluated and the optimal combination of the Young's modulus and the coefficient of thermal expansion have been predicted.
Resumo:
The use of an innovative jet impingement cooling system in a power electronics application is investigated using numerical analysis. The jet impingement system, outlined by Skuriat et al, consists of a series of cells each containing an array of holes. Cooling fluid is forced through the device, forming an array of impingement jets. The jets are arranged in a manner, which induces a high degree of mixing in the interface boundary layer. This increase in turbulent mixing is intended to induce higher Nusselt numbers and effective heat transfer coefficients. Enhanced cooling efficiency enables the power electronics module to operate at a lower temperature, greatly enhancing long-term reliability. The results obtained through numerical modelling deviates markedly from the experimentally derived data. The disparity is most likely due to the turbulence model selected and further analysis is required, involving evaluation of more advanced turbulence models.
Resumo:
Tässä diplomityössä tutkittiin vaihtoehtoja tehoelektroniikkalaitteiden kotelointiluokan kehittämiseksi. Haasteena paremman suojauksen suunnittelussa on laitteiden tuottama suuri määrä lämpöä, joka vaatii tehokkaan jäähdytyksen. Työn tuloksena saatu prototyyppi IP33 luokkaa varten täyttää standardissa SFS-EN 60529+A1 asetetut vaatimukset kyseiselle kotelointiluokalle. Rakenteessa ja valmistettavuudessa havaittiin muutama ongelma, jotka ovat korjattavissa pienillä muutoksilla. Korkeampia suojausluokkia varten testattiin IP54-luokiteltujen filtterituulettimien vaikutusta laitteen jäähdytykseen. Testien perusteella jäähdytysteho on riittävä ja filtterituulettimet todettiin toimivaksi ratkaisuksi korkeammille suojausluokille. Työn perusteella voidaan todeta, että nykyiset laitteet voidaan muokata vastaamaan IP33 luokan vaatimuksia kohtuullisen pienillä muutoksilla. Tätä korkeammat suojausluokat vaatisivat niin suuria muutoksia designiin, että todennäköisesti täysin uuden laitteen suunnittelu olis kannattavin vaihtoehto.
Resumo:
This paper introduces Java applet programs for a WWW (world wide web)-HTML (hypertext markup language)-based multimedia course in Power Electronics. The applet programs were developed with the purpose of providing an interactive visual simulation and analysis of idealized uncontrolled single-phase, and three-phase rectifiers. In addition, this paper discusses the development and utilization of JAVA applet programs to solve some design-oriented equations for rectifier applications. The major goal of these proposed JAVA applets was to provide more facilities for the students increase their pace in Power Electronics course, emphasizing waveforms analysis, and providing conditions for an on-line comparative analysis among different hands-on laboratory experiences, via a normal Internet TCP/IP connection. Therefore, using the proposed JAVA applets, which were embedded in a WWW-HTML-based course in Power Electronics, was observed an important improvement of the apprenticeship for the content of this course. Therefore, the course structure becomes fluid, allowing a true on-line course over the WWW, motivating students to learn its content, and apply it in some applications-oriented projects, and their home-works.
Resumo:
Power electronic converters are extensively adopted for the solution of timely issues, such as power quality improvement in industrial plants, energy management in hybrid electrical systems, and control of electrical generators for renewables. Beside nonlinearity, this systems are typically characterized by hard constraints on the control inputs, and sometimes the state variables. In this respect, control laws able to handle input saturation are crucial to formally characterize the systems stability and performance properties. From a practical viewpoint, a proper saturation management allows to extend the systems transient and steady-state operating ranges, improving their reliability and availability. The main topic of this thesis concern saturated control methodologies, based on modern approaches, applied to power electronics and electromechanical systems. The pursued objective is to provide formal results under any saturation scenario, overcoming the drawbacks of the classic solution commonly applied to cope with saturation of power converters, and enhancing performance. For this purpose two main approaches are exploited and extended to deal with power electronic applications: modern anti-windup strategies, providing formal results and systematic design rules for the anti-windup compensator, devoted to handle control saturation, and “one step” saturated feedback design techniques, relying on a suitable characterization of the saturation nonlinearity and less conservative extensions of standard absolute stability theory results. The first part of the thesis is devoted to present and develop a novel general anti-windup scheme, which is then specifically applied to a class of power converters adopted for power quality enhancement in industrial plants. In the second part a polytopic differential inclusion representation of saturation nonlinearity is presented and extended to deal with a class of multiple input power converters, used to manage hybrid electrical energy sources. The third part regards adaptive observers design for robust estimation of the parameters required for high performance control of power systems.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper deals with the usage of interactive simulations tools to serve as an oriented design tool for the lectures and laboratory experiments in the power electronics courses. A dynamic and interactive visualization of simulations for idealized converters in steady state are provided by the proposed educational tools, allowing students to acquire qualification in non-isolated DC-DC converters, without previous circuitry knowledge, either without the usage of sophisticated simulation packages. The interaction with proposed simulation tools can be accomplished by student using direct or graphic mode. In direct mode the parameters related with the design of converter can be inserted simply editing default values presented in textboxes, while in the graphic mode students interact indirectly with design information by manipulating visual widgets. In order to corroborate the proposed interactive simulation tools, comparisons of results from buck-boost and boost converters on proposed tools and a well-known simulator package with those on experimental evaluation from laboratory classes were presented. © 2009 IEEE.