886 resultados para Powders: solid state reaction
Resumo:
Solid-state NMR spectra of natural abundance 13C in reaction centers from photosynthetic bacteria Rhodobacter sphaeroides R-26 was measured. When the quinone acceptors were removed and continuous visible illumination of the sample was provided, exceptionally strong nuclear spin polarization was observed in NMR lines with chemical shifts resembling those of the aromatic carbons in bacteriochlorophyll and bacteriopheophytin. The observation of spin polarized 15N nuclei in bacteriochlorophyll and bacteriopheophytin was previously demonstrated with nonspecifically 15N-labeled reaction centers. Both the carbon and the nitrogen NMR studies indicate that the polarization is developed on species that carry unpaired electrons in the early electron transfer steps, including the bacteriochlorophyll dimer donor P860 and probably the bacteriopheophytin acceptor. I. Both enhanced-absorptive and emissive polarization were seen in the carbon spectrum; most lines were absorptive but the methine carbons of the porphyrin ring (alpha, beta, gamma, ) exhibited emissive polarization. The change in the sign of the hyperfine coupling at these sites indicates the existence of nodes in the spin density distribution on the tetrapyrrole cofactors flanking each methine carbon bridge.
Resumo:
We are presenting a simple, low-cost and rapid solid-state optical probe for screening chlorpromazine (CPZ) in aquacultures. The method exploits the colourimetric reaction between CPZ and Fe(III) ion that occurs at a solid/liquid interface, the solid layer consisting of ferric iron entrapped in a layer of plasticized PVC. If solutions containing CPZ are dropped onto such a layer, a colour change occurs from light yellow to dark pink or even light blue, depending on the concentration of CPZ. Visual inspection enables the concentration of CPZ to be estimated. The resulting colouration was also monitored by digital image collection for a more accurate quantification. The three coordinates of the hue, saturation and lightness system were obtained by standard image processing along with mathematical data treatment. The parameters affecting colour were assessed and optimized. Studies were conducted by visible spectrophotometry and digital image acquisition, respectively. The response of the optimized probe towards the concentration of CPZ was tested for several mathematical transformations of the colour coordinates, and a linear relation was found for the sum of hue and luminosity. The limit of detection is 50 μM (corresponding to about 16 μg per mL). The probe enables quick screening for CPZ in real water samples with prior sample treatment.
Resumo:
Solid-state MBz compounds, where M stands for bivalent Mn, Fe, Co, Ni, Cu and Zn and Bz is benzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The procedure used in the preparation of the compounds via reaction of basic carbonates with benzoic acid is not efficient in eliminating excess acid. However the TG-DTA curves permitted to verify that the binary compounds can be obtained by thermosynthesis, because the benzoic acid can be eliminated before the thermal decomposition of these compounds. The results led to information about the composition, dehydration, thermal stability, thermal decomposition and structure of the isolated compounds. On heating, these compounds decompose in two (Mn, Co, Ni, Zn) or three (Fe, Cu) steps with formation of the respective oxide (Mn3O4, Fe2O3, Co3O4, NiO, CuO and ZnO) as final residue. The theoretical and experimental spectroscopic studies suggest a covalent bidentate bond between ligand and metallic center.
Resumo:
Al(C9H6ON)3.2.5H2O was precipitated from the mixture of an aqueous solution of aluminium ion and an acid solution of 8-hydroxyquinoline, by increasing the pH value to 9.5 with ammonia aqueous solution. The TG curves in nitrogen atmosphere present mass losses due to dehydration, partial volatilisation (sublimation plus vaporisation) of the anhydrous compound followed by thermal decomposition with the formation of a mixture of carbonaceous and residues. The relation between sublimation and vaporisation depends on the heating rate used. The non isothermic integral isoconventional methods as linear equations of Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose (KAS) were used to obtain the kinetic parameters from TG and DTA curves, respectively. Despite the fact that both dehydration and volatilisation reactions follow the linearity by using both methods, only for the volatilisation reaction the validity condition, 20<= E/RT<= 50, was verified.
Resumo:
Thermal or chemical treatment of crystalline 4,4-bipyridinium salts of [MCl4]2- (M=Co, Zn, Fe, or Pt) leads to HCl loss and formation of coordination network solids [{MCl2(4,4-bipy)}n]. For M=Co, Zn, and Fe, these solids can also be prepared by mechanochemical means. Their exposure to HCl vapor or the mechanochemical reaction of metal dichlorides with [4,4-H2bipy]Cl2 gives [4,4-H2bipy]2+ salts of [CoCl4]2-, [ZnCl4]2-, and, for the first time, [FeCl4]2-.
Resumo:
A mathematical growth model for the batch solid-state fermentation process for fungal tannase production was developed and tested experimentally. The unstructured model describes the uptake and growth kinetics of Penicillium glabrum in an impregnated polyurethane foam substrate system. In general, good agreement between the experimental data and model simulations was obtained. Biomass, tannase and spore production are described by logistic kinetics with a time delay between biomass production and tannase and spore formation. Possible induction mechanisms for the latter are proposed. Hydrolysis of tannic acid, the main carbon source in the substrate system, is reasonably well described with Michaelis-Menten kinetics with time-varying enzyme concentration but a more complex reaction mechanism is suspected. The metabolism of gallic acid, a tannase-hydrolysis product of tannic acid, was shown to be growth limiting during the main growth phase. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
[(VO)-O-IV(acac) 2] reacts with the methanol solution of tridentate ONO donor hydrazone ligands (H2L1-4, general abbreviation H2L; are derived from the condensation of benzoyl hydrazine with 2-hydroxyacetophenone and its 5-substituted derivatives) in presence of neutral monodentate alkyl amine bases having stronger basicity than pyridine e. g., ethylamine, diethylamine, triethylamine and piperidine (general abbreviation B) to produce BH+[VO2L] (1-16) complexes. Five of these sixteen complexes are structurally characterized revealing that the vanadium is present in the anionic part of the molecule, [VO2L] in a distorted square pyramidal environment. The complexes 5, 6, 15 and 16 containing two H-atoms associated with the amine-N atom in their cationic part (e. g., diethylammonium and piperidinium ion) are involved in H-bonding with a neighboring molecule resulting in the formation of centrosymmetric dimers while the complex 12 (containing only one hydrogen atom in the cationic part) exhibits normal H-bonding. The nature of the H-bonds in each of the four centrosymmetric dimeric complexes is different. These complexes have potential catalytic activity in the aerial oxidation of L-ascorbic acid and are converted into the [VO(L)(hq)] complexes containing VO3+ motif on reaction with equimolar amount of 8-hydroxyquinoline (Hhq) in methanol.
Resumo:
[Ba(1-x)Y(2x/3)](Zr(0.25)Ti(0.75))O(3) powders with different yttrium concentrations (x = 0, 0.025 and 0.05) were prepared by solid state reaction. These powders were analyzed by X-ray diffraction (XRD). Fourier transform Raman scattering (FT-RS), Fourier transform infrared (FT-IR) and X-ray absorption near-edge (XANES) spectroscopies. The optical properties were investigated by means of ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. Even with the addition of yttrium, the XRD patterns revealed that all powders crystallize in a perovskite-type cubic structure. FT-RS and FT-IR spectra indicated that the presence of [YO(6)] clusters is able to change the interaction forces between the O-Ti-O and O-Zr-O bonds. XANES spectra were used to obtain information on the off-center Ti displacements or distortion effects on the [TiO(6)] clusters. The different optical band gap values estimated from UV-vis spectra suggested the existence of intermediary energy levels (shallow or deep holes) within the band gap. The PL measurements carried out with a 350 nm wavelength at room temperature showed that all powders present typical broad band emissions in the blue region. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
A new class of hybrid ruteno-cuprates - such as Ru-1212 and Ru-1222 - was discovered in 1995 by Bauerfeind and collaborators. These materials present superconducting and magnetic states at low temperatures, an atypical duality in other superconductors. The superconductivity is more easily observed in Ru-1222, while Ru-1212 is a more problematic case, due to the strong effects of the preparation details in its superconducting properties, becoming the material superconductor or not. Ru-1212 presents a critical temperature that can vary between 0 and 46 K, depending on the preparation conditions, and a temperature of magnetic transition of around 132 K. The samples were prepared through solid state reactions, by using a mixture of high purity powders, followed by calcination and sinterization in the nitrogen and oxygen atmospheres. This paper shows the preparation process of Ru-1212 samples, followed by their structural and magnetic characterization.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study proposes to synthesize (1-x)PMN-xPT powders, where 0.10 < x < 0.45, using the T-modified columbite route. This methodology consists in the preparation of the MNT columbite precursor via the polymeric precursor method, followed by the solid state reaction with PbO to get the PMN-PT powders. It was verified that from 15 mol% of Ti, the MNT presents the coexistence of two main phases with different crystal symmetry: Rutile and Columbite. However, the synthesis of (1-x)PMN-xPT powders is not affected by this event. A detailed study of structural effects in MNT and PMN-PT powders as function of Ti content was made using the Rietveld method. It was also demonstrated that powders possess high chemical and microstructural homogeneity.
Resumo:
The electrochemical redox behavior of usnic acid, mainly known for its antibiotic activity, has been investigated using cyclic, differential pulse and square wave voltammetry in aqueous electrolyte. These studies were carried out by solid state voltammetry with the solid mechanically attached on the surface of a glassy carbon electrode and at different pH values. Usnic acid did not present any reduction reaction. The pH-dependent electrochemical oxidation occurs in three steps, one electron and one proton irreversible processes, assigned to each of the hydroxyl groups in the molecule. Adsorption of the non-electroactive oxidation product was also observed, blocking the electrode surface. An oxidation mechanism was proposed and electroanalytical methodology was developed to determine usnic acid.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The dehydration, thermal decomposition and transition phase stage of Zn(II)-diclofenac compound were studied by simultaneous TG-DTA and DSC techniques. The TG and DSC curves of this compound were obtained with the mass of sample of 2 and 5 mg. Additionally, DSC curves were carried out in opened and closed alpha-alumina pans under static and nitrogen atmosphere. The DTA and DSC curves show that this compound possesses exothermic transition phase between 170-180 degrees C, which it is irreversible (monotropic reaction) The kinetics study of this transition phase stage was evaluated by DSC under non-isothermal conditions. The obtained data were evaluated with the isoconversional method, where the values of activation energy (E(a) / kJ mol(-1)) was plotted in function of the conversion degree (alpha). The results show that due to mass sample, different activation energies were obtained From these curves a tendency can be seen where the plots maintain the same profile for closed lids and almost run parallel to each other.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)