979 resultados para Powder technology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new methodology is proposed in this paper to predict the lowest power consumption for a double-tube-socket (DTS) pneumatic conveying system. This methodology is established on both experimental work and numerical simulation. After parametric studies by numerical simulation, the desired conveying cases which have the lowest power consumption were obtained. Finally those cases were carried out in our experimental system. The measured power consumption was close to that predicted. In this paper the experimental work is discussed and the numerical simulation introduced. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silica coating on Gd2O3:Eu particles was obtained by a simple method, e.g. solid-state reaction at room temperature. The urea homogeneous precipitation method was used to synthesize the Gd2O3:Eu cores. Transmission electron microscopy (TEM) shows that the core particles are spherical with submicrometer size which is the soft agglomerates with nanometer crystallites. The TEM morphology of coated particles shows that a thin film is coated on the surface of Gd2O3:Eu cores. Scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analysis indicate that the coating of silica can be used to avoid agglomeration of Gd2O3:Eu particles to obtain smaller particles. X-ray photoelectron spectra (XPS) show that silica is coated on the surface of core particles by forming the chemical bond. Photoluminescence (PL) spectra conform that Gd2O3:Eu phosphors remain well-luminescent properties by the silica coating.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Infant formula is often produced as an agglomerated powder using a spray drying process. Pneumatic conveying is commonly used for transporting this product within a manufacturing plant. The transient mechanical loads imposed by this process cause some of the agglomerates to disintegrate, which has implications for key quality characteristics of the formula including bulk density and wettability. This thesis used both experimental and modelling approaches to investigate this breakage during conveying. One set of conveying trials had the objective of establishing relationships between the geometry and operating conditions of the conveying system and the resulting changes in bulk properties of the infant formula upon conveying. A modular stainless steel pneumatic conveying rig was constructed for these trials. The mode of conveying and air velocity had a statistically-significant effect on bulk density at a 95% level, while mode of conveying was the only factor which significantly influenced D[4,3] or wettability. A separate set of conveying experiments investigated the effect of infant formula composition, rather than the pneumatic conveying parameters, and also assessed the relationships between the mechanical responses of individual agglomerates of four infant formulae and their compositions. The bulk densities before conveying, and the forces and strains at failure of individual agglomerates, were related to the protein content. The force at failure and stiffness of individual agglomerates were strongly correlated, and generally increased with increasing protein to fat ratio while the strain at failure decreased. Two models of breakage were developed at different scales; the first was a detailed discrete element model of a single agglomerate. This was calibrated using a novel approach based on Taguchi methods which was shown to have considerable advantages over basic parameter studies which are widely used. The data obtained using this model compared well to experimental results for quasi-static uniaxial compression of individual agglomerates. The model also gave adequate results for dynamic loading simulations. A probabilistic model of pneumatic conveying was also developed; this was suitable for predicting breakage in large populations of agglomerates and was highly versatile: parts of the model could easily be substituted by the researcher according to their specific requirements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an Eulerian-based numerical model of particle degradation in dilute-phase pneumatic conveying systems including bends of different angles. The model shows reasonable agreement with detailed measurements from a pilot-sized pneumatic conveying system and a much larger scale pneumatic conveyor. The potential of the model to predict degradation in a large-scale conveying system from an industrial plant is demonstrated. The importance of the effect of the bend angle on the damage imparted to the particles is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The overall objective of this work is to develop a computational model of particle degradation during dilute-phasepneumatic conveying. A key feature of such a model is the prediction of particle breakage due to particle–wall collisions in pipeline bends. This paper presents a method for calculating particle impact degradation propensity under a range of particle velocities and particle sizes. It is based on interpolation on impact data obtained in a new laboratory-scale degradation tester. The method is tested and validated against experimental results for degradation at 90± impact angle of a full-size distribution sample of granulated sugar. In a subsequent work, the calculation of degradation propensity is coupled with a ow model of the solids and gas phases in the pipeline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A complete model of particle impact degradation during dilute-phase pneumatic conveying is developed, which combines a degradation model, based on the experimental determination of breakage matrices, and a physical model of solids and gas flow in the pipeline. The solids flow in a straight pipe element is represented by a model consisting of two zones: a strand-type flow zone immediately downstream of a bend, followed by a fully suspended flow region after dispersion of the strand. The breakage matrices constructed from data on 90° angle single-impact tests are shown to give a good representation of the degradation occurring in a pipe bend of 90° angle. Numerical results are presented for degradation of granulated sugar in a large scale pneumatic conveyor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a continuum model of the flow of granular material during filling of a silo, using a viscoplastic constitutive relation based on the Drucker-Prager plasticity yield function. The performed simulations demonstrate the ability of the model to realistically represent complex features of granular flows during filling processes, such as heap formation and non-zero inclination angle of the bulk material-air interface. In addition, micro-mechanical parametrizations which account for particle size segregation are incorporated into the model. It is found that numerical predictions of segregation phenomena during filling of a binary granular mixture agree well with experimental results. Further numerical tests indicate the capability of the model to cope successfully with complex operations involving granular mixtures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fluidised hot melt granulation (FHMG) is a novel technology for granulation process in pharmaceutical industry, which has distinct advantages over other commercial techniques. The aim of this research was to investigate granulation and the effect of process parameters that may affect FHMG process. In this work, ballotini beads were used as the model particles and Lutrol (R) F 68 Poloxamer 188 was used as meltable solid binder. In order to determine the granulation and nucleation mechanism in this co-melt FHMG system, several parameters were investigated, such as binder content, particle size of binder and particle size and hydrophobicity of ballotini. These parameters were correlated to granule size distribution, mean granule size and granule shape. Furthermore, these experimental investigations were designed so that the coalescence model could be applied to the co-melt FHMG system. The analysis indicated that the non-inertial regime extends over a relatively short time period of

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitrate-based NPK fertilizer was granulated in a bench scale drum granulation unit. The initial fertilizer possessed a particle size distribution similar to those in industrial granulation units. In this work, three factors are identified affecting the degree of fertilizer granulation, these are solution to solid phase ratio, the binder viscosity and the optimal rotation speed of the drum. Experimental results indicate that a critical solution to solid phase ratio is required for an increase in granulation in terms of mass median diameter. The saturated solution viscosity in this system was measured and correlated well to binder viscosity granulation theory with the critical Stokes number calculated at 700. The optimum rotation speed for flighted and unflighted drums correlated with the Froude number relationship for full scale granulation units. (C) 2000 Elsevier Science S.A. All rights reserved.