23 resultados para Pouchitis surger
Resumo:
O reservatório ileal pélvico tem sido a melhor opção cirúrgica para a retocolite ulcerativa (RCU) e polipose adenomatosa familiar (PAF). Desde 1983 esta técnica vem sendo empregada, e o objetivo deste trabalho é apresentar revisão desta casuística, analisando seus resultados e seus pontos controversos. Setenta e três pacientes, com média de idade de 34,6 (13-63) anos e com predomínio do sexo feminino (42 pacientes, 56,7%) se submeteram ao procedimento para tratamento de RCU (46 pacientes - 63,0%) e PAF(27 - 37,0%). Foram utilizadas as seguintes variantes técnicas: em S, de grande tamanho e ramo eferente longo (oito); em S pequeno e ramo eferente reduzido (22); em "dupla câmara" (20); em J (23). Todos os procedimentos foram seguidos da construção de ileostomia de proteção. De 1993 em diante, todos os pacientes tiveram a arcada do colo direito preservada. Setenta pacientes têm pelo menos um ano de pós-operatório e 61 têm dois anos ou mais com média de 7,01 (1-16) anos. Foram consideradas complicações precoces aquelas que ocorreram até o 30º dia de pós- operatório e tardias, após esse tempo. Resultados funcionais foram analisados após um ano do fechamento da ileostomia. Ocorreram 35 complicações precoces em 22 pacientes e 39 complicações tardias em 35 pacientes. Vinte e cinco pacientes não apresentaram complicações. As principais complicações foram: obstrução intestinal (19,1 %), fistulizações cutâneas, com vagina ou trato urinário (10,9%), isquemia de reservatório (parcial ou total), (9,5%), e ileíte do reservatório (pouchitis) (6,8%). Nove pacientes (12,3%) têm ileostomia funcionante, sendo que sete pacientes têm ainda o reservatório mantido no lugar e dois tiveram-no ressecado. A mortalidade diretamente relacionada ao procedimento foi em dois pacientes, mas outros quatro pacientes evoluíram tardiamente ao óbito, por causas como desnutrição crônica e tumor de cerebelo. Em conclusão, apesar da morbidade e da existência ainda de questões controversas, as perspectivas tardias têm sido animadoras e têm estimulado a indicação deste tipo de procedimento.
Morbilidad y mortalidad en prematuros menores de 1500 gramos en un hospital regional del 2011 a 2013
Resumo:
Introducción: El presente estudio pretende determinar la mortalidad y caracterizar morbilidad de este grupo de recién nacidos, para establecer planes de mejoramiento. Materiales y método: Estudio descriptivo retrospectivo de corte transversal. Se revisaron 158 historias clínicas de los recién nacidos prematuros menores de 1500 gramos hospitalizados en la unidad de cuidados intensivos neonatales del Hospital Universitario Departamental de Nariño durante el periodo 2011 al 2013. La información fue analizada estadísticamente. Resultados: Se encontró que de 5447 nacidos vivos el 2,9 % fueron menores de 1500 gramos. 52,5 % eran de género masculino, 63,9% nacieron por cesárea. El 23,4 % no recibió esteroides antenatales. La tasa de mortalidad para el periodo de estudio en este grupo de pacientes fue de 7.3 por mil nacidos vivos. El 100% de los recién nacidos de menos de 750 gr fallecieron. Mientras que no se registro ninguna sobrevida de menos de 24 semanas. Conclusiones: Podría establecerse este como límite de viabilidad el peso al nacer < 750 gr y menos de 24 semanas de gestación, en donde la muerte es prácticamente la regla, siempre teniendo en cuenta evaluar cuidadosamente cada caso particular. La morbilidad de los prematuros de muy bajo peso al nacer esta en los rangos reportados en la literatura.
Resumo:
OBJECTIVE: To evaluate the results of ileal J-pouch anal anastomosis in ulcerative colitis and familial adenomatous polyposis. METHOD: Retrospective analysis of medical records of 49 patients submitted to ileal J-pouch anal anastomosis. RESULTS: Ulcerative colitis was diagnosed in 65% and familial adenomatous polyposis in 34%. Mean age was 39.5 years. 43% were male. Among familial adenomatous polyposis, 61% were diagnosed with colorectal cancer. Thirty-one percent of patients with ulcerative colitis was submitted to a previous surgical approach and 21% of these had toxic megacolon. Average hospital stay was 10 days. Post-operative complications occurred in 50% of patients with ulcerative colitis and 29.4% with familial adenomatous polyposis. Intestinal diversion was performed in 100% of ulcerative colitis and 88% of familial adenomatous polyposis. Pouchitis occurred in eight cases (seven ulcerative colitis and one FAP), requiring excision of the pouch in three ulcerative colitis. Mortality rate was 7.6%: two cases of carcinoma on the pouch and two post-operative complications. Late post-operative complications occurred in 22.4%: six familial adenomatous polyposis and five ulcerative colitis). Two patients had erectile dysfunction, and one retrograde ejaculation. One patient with severe perineal dermatitis was submitted to excision of the pouch. Incontinence occurred in four patients and two reported soil. Mean bowel movement was five times a day. CONCLUSION: Ileal J-pouch anal anastomosis is a safe surgery with acceptable morbidity and good functional results, if well indicated and performed in referral centers.
Resumo:
The ideal approach for the long term treatment of intestinal disorders, such as inflammatory bowel disease (IBD), is represented by a safe and well tolerated therapy able to reduce mucosal inflammation and maintain homeostasis of the intestinal microbiota. A combined therapy with antimicrobial agents, to reduce antigenic load, and immunomodulators, to ameliorate the dysregulated responses, followed by probiotic supplementation has been proposed. Because of the complementary mechanisms of action of antibiotics and probiotics, a combined therapeutic approach would give advantages in terms of enlargement of the antimicrobial spectrum, due to the barrier effect of probiotic bacteria, and limitation of some side effects of traditional chemiotherapy (i.e. indiscriminate decrease of aggressive and protective intestinal bacteria, altered absorption of nutrient elements, allergic and inflammatory reactions). Rifaximin (4-deoxy-4’-methylpyrido[1’,2’-1,2]imidazo[5,4-c]rifamycin SV) is a product of synthesis experiments designed to modify the parent compound, rifamycin, in order to achieve low gastrointestinal absorption while retaining good antibacterial activity. Both experimental and clinical pharmacology clearly show that this compound is a non systemic antibiotic with a broad spectrum of antibacterial action, covering Gram-positive and Gram-negative organisms, both aerobes and anaerobes. Being virtually non absorbed, its bioavailability within the gastrointestinal tract is rather high with intraluminal and faecal drug concentrations that largely exceed the MIC values observed in vitro against a wide range of pathogenic microorganisms. The gastrointestinal tract represents therefore the primary therapeutic target and gastrointestinal infections the main indication. The little value of rifaximin outside the enteric area minimizes both antimicrobial resistance and systemic adverse events. Fermented dairy products enriched with probiotic bacteria have developed into one of the most successful categories of functional foods. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer a health benefit on the host” (FAO/WHO, 2002), and mainly include Lactobacillus and Bifidobacterium species. Probiotic bacteria exert a direct effect on the intestinal microbiota of the host and contribute to organoleptic, rheological and nutritional properties of food. Administration of pharmaceutical probiotic formula has been associated with therapeutic effects in treatment of diarrhoea, constipation, flatulence, enteropathogens colonization, gastroenteritis, hypercholesterolemia, IBD, such as ulcerative colitis (UC), Crohn’s disease, pouchitis and irritable bowel syndrome. Prerequisites for probiotics are to be effective and safe. The characteristics of an effective probiotic for gastrointestinal tract disorders are tolerance to upper gastrointestinal environment (resistance to digestion by enteric or pancreatic enzymes, gastric acid and bile), adhesion on intestinal surface to lengthen the retention time, ability to prevent the adherence, establishment and/or replication of pathogens, production of antimicrobial substances, degradation of toxic catabolites by bacterial detoxifying enzymatic activities, and modulation of the host immune responses. This study was carried out using a validated three-stage fermentative continuous system and it is aimed to investigate the effect of rifaximin on the colonic microbial flora of a healthy individual, in terms of bacterial composition and production of fermentative metabolic end products. Moreover, this is the first study that investigates in vitro the impact of the simultaneous administration of the antibiotic rifaximin and the probiotic B. lactis BI07 on the intestinal microbiota. Bacterial groups of interest were evaluated using culture-based methods and molecular culture-independent techniques (FISH, PCR-DGGE). Metabolic outputs in terms of SCFA profiles were determined by HPLC analysis. Collected data demonstrated that rifaximin as well as antibiotic and probiotic treatment did not change drastically the intestinal microflora, whereas bacteria belonging to Bifidobacterium and Lactobacillus significantly increase over the course of the treatment, suggesting a spontaneous upsurge of rifaximin resistance. These results are in agreement with a previous study, in which it has been demonstrated that rifaximin administration in patients with UC, affects the host with minor variations of the intestinal microflora, and that the microbiota is restored over a wash-out period. In particular, several Bifidobacterium rifaximin resistant mutants could be isolated during the antibiotic treatment, but they disappeared after the antibiotic suspension. Furthermore, bacteria belonging to Atopobium spp. and E. rectale/Clostridium cluster XIVa increased significantly after rifaximin and probiotic treatment. Atopobium genus and E. rectale/Clostridium cluster XIVa are saccharolytic, butyrate-producing bacteria, and for these characteristics they are widely considered health-promoting microorganisms. The absence of major variations in the intestinal microflora of a healthy individual and the significant increase in probiotic and health-promoting bacteria concentrations support the rationale of the administration of rifaximin as efficacious and non-dysbiosis promoting therapy and suggest the efficacy of an antibiotic/probiotic combined treatment in several gut pathologies, such as IBD. To assess the use of an antibiotic/probiotic combination for clinical management of intestinal disorders, genetic, proteomic and physiologic approaches were employed to elucidate molecular mechanisms determining rifaximin resistance in Bifidobacterium, and the expected interactions occurring in the gut between these bacteria and the drug. The ability of an antimicrobial agent to select resistance is a relevant factor that affects its usefulness and may diminish its useful life. Rifaximin resistance phenotype was easily acquired by all bifidobacteria analyzed [type strains of the most representative intestinal bifidobacterial species (B. infantis, B. breve, B. longum, B. adolescentis and B. bifidum) and three bifidobacteria included in a pharmaceutical probiotic preparation (B. lactis BI07, B. breve BBSF and B. longum BL04)] and persisted for more than 400 bacterial generations in the absence of selective pressure. Exclusion of any reversion phenomenon suggested two hypotheses: (i) stable and immobile genetic elements encode resistance; (ii) the drug moiety does not act as an inducer of the resistance phenotype, but enables selection of resistant mutants. Since point mutations in rpoB have been indicated as representing the principal factor determining rifampicin resistance in E. coli and M. tuberculosis, whether a similar mechanism also occurs in Bifidobacterium was verified. The analysis of a 129 bp rpoB core region of several wild-type and resistant bifidobacteria revealed five different types of miss-sense mutations in codons 513, 516, 522 and 529. Position 529 was a novel mutation site, not previously described, and position 522 appeared interesting for both the double point substitutions and the heterogeneous profile of nucleotide changes. The sequence heterogeneity of codon 522 in Bifidobacterium leads to hypothesize an indirect role of its encoded amino acid in the binding with the rifaximin moiety. These results demonstrated the chromosomal nature of rifaximin resistance in Bifidobacterium, minimizing risk factors for horizontal transmission of resistance elements between intestinal microbial species. Further proteomic and physiologic investigations were carried out using B. lactis BI07, component of a pharmaceutical probiotic preparation, as a model strain. The choice of this strain was determined based on the following elements: (i) B. lactis BI07 is able to survive and persist in the gut; (ii) a proteomic overview of this strain has been recently reported. The involvement of metabolic changes associated with rifaximin resistance was investigated by proteomic analysis performed with two-dimensional electrophoresis and mass spectrometry. Comparative proteomic mapping of BI07-wt and BI07-res revealed that most differences in protein expression patterns were genetically encoded rather than induced by antibiotic exposure. In particular, rifaximin resistance phenotype was characterized by increased expression levels of stress proteins. Overexpression of stress proteins was expected, as they represent a common non specific response by bacteria when stimulated by different shock conditions, including exposure to toxic agents like heavy metals, oxidants, acids, bile salts and antibiotics. Also, positive transcription regulators were found to be overexpressed in BI07-res, suggesting that bacteria could activate compensatory mechanisms to assist the transcription process in the presence of RNA polymerase inhibitors. Other differences in expression profiles were related to proteins involved in central metabolism; these modifications suggest metabolic disadvantages of resistant mutants in comparison with sensitive bifidobacteria in the gut environment, without selective pressure, explaining their disappearance from faeces of patients with UC after interruption of antibiotic treatment. The differences observed between BI07-wt e BI07-res proteomic patterns, as well as the high frequency of silent mutations reported for resistant mutants of Bifidobacterium could be the consequences of an increased mutation rate, mechanism which may lead to persistence of resistant bacteria in the population. However, the in vivo disappearance of resistant mutants in absence of selective pressure, allows excluding the upsurge of compensatory mutations without loss of resistance. Furthermore, the proteomic characterization of the resistant phenotype suggests that rifaximin resistance is associated with a reduced bacterial fitness in B. lactis BI07-res, supporting the hypothesis of a biological cost of antibiotic resistance in Bifidobacterium. The hypothesis of rifaximin inactivation by bacterial enzymatic activities was verified by using liquid chromatography coupled with tandem mass spectrometry. Neither chemical modifications nor degradation derivatives of the rifaximin moiety were detected. The exclusion of a biodegradation pattern for the drug was further supported by the quantitative recovery in BI07-res culture fractions of the total rifaximin amount (100 μg/ml) added to the culture medium. To confirm the main role of the mutation on the β chain of RNA polymerase in rifaximin resistance acquisition, transcription activity of crude enzymatic extracts of BI07-res cells was evaluated. Although the inhibition effects of rifaximin on in vitro transcription were definitely higher for BI07-wt than for BI07-res, a partial resistance of the mutated RNA polymerase at rifaximin concentrations > 10 μg/ml was supposed, on the basis of the calculated differences in inhibition percentages between BI07-wt and BI07-res. By considering the resistance of entire BI07-res cells to rifaximin concentrations > 100 μg/ml, supplementary resistance mechanisms may take place in vivo. A barrier for the rifaximin uptake in BI07-res cells was suggested in this study, on the basis of the major portion of the antibiotic found to be bound to the cellular pellet respect to the portion recovered in the cellular lysate. Related to this finding, a resistance mechanism involving changes of membrane permeability was supposed. A previous study supports this hypothesis, demonstrating the involvement of surface properties and permeability in natural resistance to rifampicin in mycobacteria, isolated from cases of human infection, which possessed a rifampicin-susceptible RNA polymerase. To understand the mechanism of membrane barrier, variations in percentage of saturated and unsaturated FAs and their methylation products in BI07-wt and BI07-res membranes were investigated. While saturated FAs confer rigidity to membrane and resistance to stress agents, such as antibiotics, a high level of lipid unsaturation is associated with high fluidity and susceptibility to stresses. Thus, the higher percentage of saturated FAs during the stationary phase of BI07-res could represent a defence mechanism of mutant cells to prevent the antibiotic uptake. Furthermore, the increase of CFAs such as dihydrosterculic acid during the stationary phase of BI07-res suggests that this CFA could be more suitable than its isomer lactobacillic acid to interact with and prevent the penetration of exogenous molecules including rifaximin. Finally, the impact of rifaximin on immune regulatory functions of the gut was evaluated. It has been suggested a potential anti-inflammatory effect of rifaximin, with reduced secretion of IFN-γ in a rodent model of colitis. Analogously, it has been reported a significant decrease in IL-8, MCP-1, MCP-3 e IL-10 levels in patients affected by pouchitis, treated with a combined therapy of rifaximin and ciprofloxacin. Since rifaximin enables in vivo and in vitro selection of Bifidobacterium resistant mutants with high frequency, the immunomodulation activities of rifaximin associated with a B. lactis resistant mutant were also taken into account. Data obtained from PBMC stimulation experiments suggest the following conclusions: (i) rifaximin does not exert any effect on production of IL-1β, IL-6 and IL-10, whereas it weakly stimulates production of TNF-α; (ii) B. lactis appears as a good inducer of IL-1β, IL-6 and TNF-α; (iii) combination of BI07-res and rifaximin exhibits a lower stimulation effect than BI07-res alone, especially for IL-6. These results confirm the potential anti-inflammatory effect of rifaximin, and are in agreement with several studies that report a transient pro-inflammatory response associated with probiotic administration. The understanding of the molecular factors determining rifaximin resistance in the genus Bifidobacterium assumes an applicative significance at pharmaceutical and medical level, as it represents the scientific basis to justify the simultaneous use of the antibiotic rifaximin and probiotic bifidobacteria in the clinical treatment of intestinal disorders.
Resumo:
We aimed to evaluate the role of anti-TNF-alpha therapy with infliximab and adalimumab in a cohort of pediatric patients followed by our Center from 2002 to 2012. The cohort of patients examined consisted of 40 patients: 34 with Crohn disease (85%), 5 with ulcerative colitis (12.5%), one with chronic pouchitis after IPAA for ulcerative colitis (2.5%). All patients were treated with the anti-TNF-α biologic agents infliximab and adalimumab. Thirty-six received infliximab therapy: 19/36 received only infliximab, 17/36 received infliximab and then adalimumab due to loss of response to infliximab and steroid dependency; 4 patients received only adalimumab (infliximab-naïve). Anti-TNF treatment was started before 18 years of age in 34 patients: 29 received infliximab and 5 started adalimumab during childhood. Medical charts were reviewed and safety and efficacy of anti-TNF-alpha have been determined in this population.
Resumo:
Antifibrotic effects of α- (40, 60, 80, 100, and 120 μM), γ- (10, 20, 30, and 40 μM) and δ-tocotrienol (10, 20, 30, and 40 μM) on hTf cultures were evaluated by performing proliferation, migration and collagen synthesis assays. Whereas for vitamin E the exposure time was set to 7 days to mimic subconjunctival application, cultures were exposed only 5 min to mitomycin C 100 μg/ml to mimic intraoperative administration. Cell morphology (phase contrast microscopy) as an assessment for cytotoxicity and cell density by measuring DNA content in a fluorometric assay to determine proliferation inhibition was performed on day 0, 4, and 7. Migration ability and collagen synthesis of fibroblasts were measured. Results All tested tocotrienol isoforms were able to significantly inhibit hTf proliferation in a dose-dependent manner (maximal inhibitory effect without relevant morphological changes at day 4 for α-tocotrienol 80 μM with 36.7% and at day 7 for α-tocotrienol 80 μM with 42.6% compared to control). Degenerative cell changes were observed in cultures with concentrations above 80 μM for α- and above 30 μM for γ- and δ-tocotrienol. The highest collagen synthesis inhibition has been found with 80 µM α-tocotrienol (62.4%) and no significant inhibition for mitomycin C (2.5%). Migration ability was significantly reduced in cultures exposed to 80 µM α- and 30 µM γ-tocotrienol (inhibition of 82.2% and 79.5%, respectively, compared to control) and also after mitomycin C treatment (60.0%). Complete growth inhibition without significant degenerative cell changes could only be achieved with mitomycin C. Conclusion In vitro, all tested tocotrienol isoforms were able to inhibit proliferation, migration and collagen synthesis of human Tenon’s fibroblasts and therefore may have the potential as an anti-scarring agent in filtrating glaucoma surger
Resumo:
Diarrhea remains a significant cause of worldwide morbidity and mortality. Over 4 million children die of diarrhea annually. Although antibiotics can be used as prophylaxis or for treatment of diarrhea, concern remains over antibiotic resistance. Rifaximin is a semi-synthetic rifamycin derivative that can be used to treat symptoms of infectious diarrhea, inflammatory bowel syndrome, bacterial overgrowth of the small bowel, pouchitis, and fulminant ulcerative colitis. Rifaximin is of particular interest because it is poorly adsorbed in the intestines, shows no indication of inducing bacterial resistance, and has minimal effect on intestinal flora. In order to better understand how rifaximin functions, we sought to compare the protein expression profile of cells pretreated with rifaximin, as compared to cells treated with acetone, rifamycin (control antibiotic), or media (untreated). 2-D gel electrophoresis identified 38 protein spots that were up- or down-regulated by over 2-fold in rifaximin treated cells compared to controls. 16 of these spots were down-regulated, including keratin, annexin A5, intestinal-type alkaline phosphatase, histone h4, and histone-binding protein RbbP4. 22 spots were up-regulated, including heat shock protein HSP 90 alpha, alkaline phosphatase, and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. A better understanding of the functionality of rifaximin will identify additional potential uses for rifaximin and determine for whom the drug is best suited. ^
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014