250 resultados para Potatoes.
Resumo:
To examine how sulfur deprivation may affect acrylamide formation in cooked potatoes, three varieties of potato were grown under conditions of either severe sulfur deprivation or an adequate supply of sulfur. In all three varieties sulfur deprivation led to a decrease in acrylamide formation, even though the levels of sugars, which are acrylamide precursors, were higher in tubers of the sulfur-deprived plants. In one variety the concentration of free asparagine, the other precursor for acrylamide, was also higher. There was a very close correlation between the concentration of asparagine in the tubers expressed as a proportion of the total free amino acid pool and the formation of acrylamide upon cooking, whereas sugars were poorly correlated with acrylamide. In potatoes, where concentrations of sugars are usually limiting, competition between asparagine and other amino acids participating in the Maillard reaction may be a key determinant of the amount of acrylamide that is formed during processing.
Resumo:
Total and individual carotenoid concentrations were determined by spectro photometry and HPLC, in raw tubers of a sample of 23 accessions of Solanum phureja potatoes taken at random from the world germplasm collection following its stratification on tuber flesh color. Lutein, zeaxanthin, violaxanthin, antheraxanthin and beta-carotene were detected in all accessions and three distinct patterns of carotenoid accumulation were evidenced by cluster analysis. Accessions in group 1 showed the highest concentrations of total carotenoids (1258-1840 mu g 100 g(-1) FW) comprised largely of zeaxanthin (658-1290 mu g 100 g(-1) FW) with very low or no presence of beta-carotene (below 5.4 mu g 100 g(-1) FW). Accessions in group 2 presented moderate total carotenoid concentrations with violaxanthin, antheraxanthin, lutein and zeaxanthin as the major carotenoids. Accessions in group 3 showed low concentrations of total carotenoids (97-262 mu g 100 g(-1) FW) and very low or no zeaxanthin, with lutein and violaxanthin as the predominant carotenoids and relatively high concentrations of beta-carotene(up to 27 mu g 100 g(-1) FW). Five accessions with significant concentrations of zeaxanthin were identified with the accession 703566 showing the highest concentration (1290 p g 100 g(-1) FW). This value is to our knowledge higher than any value previously reported for potatoes, including those achieved through genetic modification. For the 23 S. phureja accessions, total carotenoid concentration was positively and significantly correlated with antheraxanthin and zeaxanthin concentrations, and negatively and significantly correlated with beta-carotene concentration. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Sunflower oil (SO) and high-oleic sunflower oil (HOSO) were used to prepare fried potatoes by either discontinuous or continuous laboratory frying. Fried potatoes that had been fried in oils of differing quality were stored at 60 degrees C for up to 30 d and evaluated for polar compounds, polymers, peroxide value, oil stability index, and alpha-tocopherol content. Results obtained through the various methods applied were consistent and indicated that the length of the induction period could not be explained only on the basis of the degree of unsaturation or polar compound levels in fried potatoes before storage. alpha-Tocopherol content also had a significant influence as potatoes fried in HOSO, with 16% polar compounds and only 10 mg/kg alpha-tocopherol at the starting point of storage, were oxidized more rapidly than potatoes fried in SO with a comparatively higher degradation level, 19% polar compounds, and 100 mg/kg alpha-tocopherol.
Resumo:
The spindle-tuber disease is one of the most prevalent potato diseases occurring in all parts of Nebraska. It has been found in all varieties tested. It does much damage to the potato crop, in that it reduces the yield and injures the market quality of the potatoes. This 1925 publication discusses the spindler-tuber disease also known as "running-out" or degeneracy of seed potatoes; the distribution of the disease; effect upon yield and quality; symptoms of the different potato varieties; transmission of the disease and experiments; rate of increase of the disease; dry land versus irrigation in western Nebraska; straw mulching versus cultivation in eastern Nebraska; planting times; harvesting; and control.
Resumo:
Iodine is an essential microelement for human health because it is a constituent of the thyroid hormones that regulate growth and development of the organism. Iodine Deficiency Disorders (IDDs) are believed to be one of the commonest preventable human health problems in the world today, according to the World Health Organization: that diseases include endemic goiter, cretinism and fetal abnormalities, among others, and they are caused by lack of iodine in the diet, that is the main source of iodine. Since iodine intake from food is not enough respect to human needs, this can be remedied through dietary diversification, mineral supplementation, food fortification, or increasing the concentration and/or bioavailability of mineral elements in the edible portions of crops through agricultural intervention or genetic selection (biofortification). The introduction of iodized salt is a strategy widely used and accepted to eradicate iodine deficiency, because it is an inexpensive source of stable iodine. Since the intake of salt, though iodized, must still be limited according to the risk of cardiovascular disease, so the increase of iodine content in plants for the production of functional foods is representing a field of study of particular interest and a potential market. In Italy potatoes enriched with iodine are produced by a patented procedure of agronomic biofortification for the fresh market since several years, furthermore they are recently accepted and recommended by Italian Thyroid Association, as an alternative source of iodine. Researches performed during the PhD course intended to characterize this innovative vegetables products, focusing the attention on different aspects, such as chemistry, agriculture, and quality of fresh and fried potatoes. For this purpose, lipid fraction of raw material was firstly investigated, in order to assess whether the presence of iodine in plant metabolism can affect fatty acid or sterol biosynthesis, according to the hypothesis that iodine can be bounded to polyunsaturated fatty acids of cell membranes, protecting them from peroxydation; phytosterols of plant sterol are also studied because their importance in reducing serum cholesterol, especially in potato plant sterols are also involved in synthesis of glycoalkaloid, a family of steroidal toxic secondary metabolites present in plants of the Solanaceae family. To achieve this goal chromatographic analytical techniques were employed to identify and quantify fatty acids and sterols profile of common and iodine enriched row potatoes. Another aim of the project was to evaluate the effects of frying on the quality of iodine-enriched and common potatoes. Since iodine-enriched potatoes are nowadays produced only for the fresh market, preliminary trials of cultivation under controlled environment were carried out to verify if potato varieties suitable for processing were able to absorb and accumulate iodine in the tuber. In a successive phase, these varieties were grown in the field, to evaluate their potential productivity and quality at harvest and after storage. The best potato variety to be destined for processing purposes, was finally subjected to repeated frying cycles; the effects of lipid oxidation on the composition and quality of both potatoes and frying oil bath were evaluated by chromatographic and spectrophotometric analytical techniques. Special attention were paid on volatile compounds of fried potatoes.
Resumo:
Atrial fibrillation (AF) ablation has evolved to the treatment of choice for patients with drug-resistant and symptomatic AF. Pulmonary vein isolation at the ostial or antral level usually is sufficient for treatment of true paroxysmal AF. For persistent AF ablation, drivers and perpetuators outside of the pulmonary veins are responsible for AF maintenance and have to be targeted to achieve satisfying arrhythmia-free success rate. Both complex fractionated atrial electrogram (CFAE) ablation and linear ablation are added to pulmonary vein isolation for persistent AF ablation. Nevertheless, ablation failure and necessity of repeat ablations are still frequent, especially after persistent AF ablation. Pulmonary vein reconduction is the main reason for arrhythmia recurrence after paroxysmal and to a lesser extent after persistent AF ablation. Failure of persistent AF ablation mostly is a consequence of inadequate trigger ablation, substrate modification or incompletely ablated or reconducting linear lesions. In this review we will discuss these points responsible for AF recurrence after ablation and review current possibilities on how to overcome these limitations.
Resumo:
The potential use of commercial fibres (pea fibre, inulin, and their blends), as fibre-enriching agents in frozen/thawed mashed potatoes was reported. Pea fibre and inulin supplementations conferred hardness and softness to the product, respectively. Differences were attributed to the relationship of the fibre with the potato starch matrix. The association of pea fibre at low concentration (<15 g/kg mashed potatoes) and inulin at high concentration (>45 g/kg) is strongly encouraged to fortify the diet without promoting negative effects on textural and rheological properties of frozen/thawed mashed potatoes or colour and overall acceptability of the resulting products.
Resumo:
Developing products having a high nutritional value and good storage stability during freezing is a challenge. Inulin (I) and extra virgin olive oil (EVOO) have interesting functional properties. The e?ect of the addition of I and EVOO blends at di?erent I:EVOO ratios (0:0, 0:60, 15:45, 30:30, 45:15, 60:0, 30:45 and 45:30) on the rheological, physical, sensory and structural properties of fresh and frozen ? thawed mashed potatoes formulated without and with added cryoprotectants was analysed and compared. Addition of I and EVOO (either alone or blended) reduced apparent viscosity and pseudoplasticity producing softer systems, indicating that both ingredients behave as soft ?llers. Samples with added I at the higher concentrations )1 (?45 g kg ) showed lower ?ow index and consistency, which is related to formation of smaller I particles; microphotographs indicated that gelling properties of I depended mostly upon processing. Frozen ? thawed samples were judged more acceptable and creamier than their fresh counterparts.
Resumo:
The effect of the addition of soy protein isolate (SPI) (0, 15, 30, 45 and 60 g kg ) on viscoelastic properties, large deformation measurements and microstructure of fresh (FM) and frozen/thawed (F/TM) mashed potatoes was investigated. Rheological data showed weak gel behaviour for both FM and F/TM potatoes without and with added SPI together with a signi?cant decrease of system viscoelasticity (G and G ) with increasing SPI volume fraction, primarily attributed to the no interaction between the amylose/amylopectine matrix and the dispersed SPI particles or aggregates as revealed by scanning electron microscopy (SEM). Micrographs also showed that SPI formed white coarse aggregates. A freeze/thaw cycle produced a more signi?cant decrease in viscoelastic functions, due to superior aggregation of denatured SPI and reduced water activity. In F/TM samples, high correlations between small and large deformation measurements were found. Results may be useful for technological applications in SPI-enriched.
Resumo:
Solar UV irradiation is the causal factor for the increasing incidence of human skin carcinomas. The activation of the transcription factor activator protein-1 (AP-1) has been shown to be responsible for the tumor promoter action of UV light in mammalian cells. We demonstrate that proteinase inhibitor I (Inh I) and II (Inh II) from potato tubers, when applied to mouse epidermal JB6 cells, block UV-induced AP-1 activation. The inhibition appears to be specific for UV-induced signal transduction for AP-1 activation, because these inhibitors did not block UV-induced p53 activation nor did they exhibit any significant influence on epidermal growth factor-induced AP-1 transactivation. Furthermore, the inhibition of UV-induced AP-1 activity occurs through a pathway that is independent of extracellular signal-regulated kinases and c-Jun N-terminal kinases as well as P38 kinases. Considering the important role of AP-1 in tumor promotion, it is possible that blocking UV-induced AP-1 activity by Inh I or Inh II may be functionally linked to irradiation-induced cell transformation.
Resumo:
A hammerhead ribozyme [R(-)] targeting the minus strand RNA of potato spindle tuber viroid (PSTVd) and a mutated nonfunctional ribozyme [mR(-)] were designed, cloned, and transcribed. As predicted, both monomer and dimer transcripts of the active R(-) ribozyme gene could cleave the PSTVd minus strand dimer RNA into three fragments of 77, 338, and 359 bases in vitro at 25 and 50°C. The tandem dimer genes of R(-) and mR(-) were subcloned separately into the plant expression vector pROK2. Transgenic potato plants (cultivar Desirée) were generated by Agrobacterium tumefaciens-mediated transformation. Twenty-three of 34 independent transgenic plant lines expressing the active ribozyme R(-) resulted in having high levels of resistance to PSTVd, being free of PSTVd accumulation after challenge inoculation with PSTVd, but the remaining lines showed weaker levels of resistance to PSTVd with low levels of PSTVd accumulation. In contrast, 59 of 60 independent transgenic lines expressing the mutated ribozyme mR(-) were susceptible to PSTVd inoculation and had levels of PSTVd accumulation similar to that of the control plants transformed with the empty vector. The resistance against PSTVd replication was stably inherited to the vegetative progenies.
Resumo:
Proteinase inhibitor I (Inh I) and proteinase inhibitor II (Inh II) from potato tubers are effective proteinase inhibitors of chymotrypsin and trypsin. Inh I and Inh II were shown to suppress irradiation-induced transformation in mouse embryo fibroblasts suggesting that they possess anticarcinogenic characteristics. We have previously demonstrated that Inh I and Inh II could effectively block UV irradiation-induced activation of transcription activator protein 1 (AP-1) in mouse JB6 epidermal cells, which mechanistically may explain their anticarcinogenic actions. In the present study, we investigated the effects of Inh I and Inh II on the expression and composition pattern of the AP-1 complex following stimulation by UV B (UVB) irradiation in the JB6 model. We found that Inh I and Inh II specifically inhibited UVB-induced AP-1, but not NFκB, activity in JB6 cells. Both Inh I and Inh II up-regulated AP-1 constituent proteins, JunD and Fra-2, and suppressed c-Jun and c-Fos expression and composition in bound AP-1 in response to UVB stimulation. This regulation of the AP-1 protein compositional pattern in response to Inh I or Inh II may be critical for the inhibition of UVB-induced AP-1 activity by these agents found in potatoes.