862 resultados para Post classification method
Resumo:
Sea-ice concentrations in the Laptev Sea simulated by the coupled North Atlantic-Arctic Ocean-Sea-Ice Model and Finite Element Sea-Ice Ocean Model are evaluated using sea-ice concentrations from Advanced Microwave Scanning Radiometer-Earth Observing System satellite data and a polynya classification method for winter 2007/08. While developed to simulate largescale sea-ice conditions, both models are analysed here in terms of polynya simulation. The main modification of both models in this study is the implementation of a landfast-ice mask. Simulated sea-ice fields from different model runs are compared with emphasis placed on the impact of this prescribed landfast-ice mask. We demonstrate that sea-ice models are not able to simulate flaw polynyas realistically when used without fast-ice description. Our investigations indicate that without landfast ice and with coarse horizontal resolution the models overestimate the fraction of open water in the polynya. This is not because a realistic polynya appears but due to a larger-scale reduction of ice concentrations and smoothed ice-concentration fields. After implementation of a landfast-ice mask, the polynya location is realistically simulated but the total open-water area is still overestimated in most cases. The study shows that the fast-ice parameterization is essential for model improvements. However, further improvements are necessary in order to progress from the simulation of large-scale features in the Arctic towards a more detailed simulation of smaller-scaled features (here polynyas) in an Arctic shelf sea.
Resumo:
In this paper we present a novel approach for multispectral image contextual classification by combining iterative combinatorial optimization algorithms. The pixel-wise decision rule is defined using a Bayesian approach to combine two MRF models: a Gaussian Markov Random Field (GMRF) for the observations (likelihood) and a Potts model for the a priori knowledge, to regularize the solution in the presence of noisy data. Hence, the classification problem is stated according to a Maximum a Posteriori (MAP) framework. In order to approximate the MAP solution we apply several combinatorial optimization methods using multiple simultaneous initializations, making the solution less sensitive to the initial conditions and reducing both computational cost and time in comparison to Simulated Annealing, often unfeasible in many real image processing applications. Markov Random Field model parameters are estimated by Maximum Pseudo-Likelihood (MPL) approach, avoiding manual adjustments in the choice of the regularization parameters. Asymptotic evaluations assess the accuracy of the proposed parameter estimation procedure. To test and evaluate the proposed classification method, we adopt metrics for quantitative performance assessment (Cohen`s Kappa coefficient), allowing a robust and accurate statistical analysis. The obtained results clearly show that combining sub-optimal contextual algorithms significantly improves the classification performance, indicating the effectiveness of the proposed methodology. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The active ingredients used in the formulation of toxic baits for leaf-cutting ants (Hymenoptera: Formicidae) should possess a delayed action defined as an insecticidal activity whereby worker mortality is ≤15% at 24 hours and ≥90% at 21 days. Serious shortcomings have occurred in the search for new active ingredients, such as the initial selection of fenoxycarb, copper oxychloride and diflubenzuron, compounds considered very promising but whose inefficiency was verified only later, indicating methodological problems. In view of this situation, we developed a classification method for insecticidal activity over time using workers of the leaf-cutting ant Atta sexdens rubropilosa Forel. The insecticides used were fipronil, sulfluramid GX071HB and sulfluramid GX439, vehicled in an attractive pasty formulation prepared based on citrus pulp. The results obtained were consistent from a toxicological viewpoint and agreed with the literature in terms of the control of colonies. Sulfluramids were found to possess a delayed action at a broad range of concentrations, in agreement with the fact that these substances are highly effective in the control of all leaf-cutting ant species. The smaller range of concentrations of fipronil with delayed action is probably related to its lower efficacy for species more difficult to control such as Atta capiguara (Forti et al. 2003). We discuss the importance of relating behavioral particularities to the specific feeding habits of leaf-cutting ants, with methodological adequacy of the assessment of insecticides aimed at toxic baits.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Hierarchical multi-label classification is a complex classification task where the classes involved in the problem are hierarchically structured and each example may simultaneously belong to more than one class in each hierarchical level. In this paper, we extend our previous works, where we investigated a new local-based classification method that incrementally trains a multi-layer perceptron for each level of the classification hierarchy. Predictions made by a neural network in a given level are used as inputs to the neural network responsible for the prediction in the next level. We compare the proposed method with one state-of-the-art decision-tree induction method and two decision-tree induction methods, using several hierarchical multi-label classification datasets. We perform a thorough experimental analysis, showing that our method obtains competitive results to a robust global method regarding both precision and recall evaluation measures.
Resumo:
The purpose of this Thesis is to develop a robust and powerful method to classify galaxies from large surveys, in order to establish and confirm the connections between the principal observational parameters of the galaxies (spectral features, colours, morphological indices), and help unveil the evolution of these parameters from $z \sim 1$ to the local Universe. Within the framework of zCOSMOS-bright survey, and making use of its large database of objects ($\sim 10\,000$ galaxies in the redshift range $0 < z \lesssim 1.2$) and its great reliability in redshift and spectral properties determinations, first we adopt and extend the \emph{classification cube method}, as developed by Mignoli et al. (2009), to exploit the bimodal properties of galaxies (spectral, photometric and morphologic) separately, and then combining together these three subclassifications. We use this classification method as a test for a newly devised statistical classification, based on Principal Component Analysis and Unsupervised Fuzzy Partition clustering method (PCA+UFP), which is able to define the galaxy population exploiting their natural global bimodality, considering simultaneously up to 8 different properties. The PCA+UFP analysis is a very powerful and robust tool to probe the nature and the evolution of galaxies in a survey. It allows to define with less uncertainties the classification of galaxies, adding the flexibility to be adapted to different parameters: being a fuzzy classification it avoids the problems due to a hard classification, such as the classification cube presented in the first part of the article. The PCA+UFP method can be easily applied to different datasets: it does not rely on the nature of the data and for this reason it can be successfully employed with others observables (magnitudes, colours) or derived properties (masses, luminosities, SFRs, etc.). The agreement between the two classification cluster definitions is very high. ``Early'' and ``late'' type galaxies are well defined by the spectral, photometric and morphological properties, both considering them in a separate way and then combining the classifications (classification cube) and treating them as a whole (PCA+UFP cluster analysis). Differences arise in the definition of outliers: the classification cube is much more sensitive to single measurement errors or misclassifications in one property than the PCA+UFP cluster analysis, in which errors are ``averaged out'' during the process. This method allowed us to behold the \emph{downsizing} effect taking place in the PC spaces: the migration between the blue cloud towards the red clump happens at higher redshifts for galaxies of larger mass. The determination of $M_{\mathrm{cross}}$ the transition mass is in significant agreement with others values in literature.
Resumo:
Current methods to characterize mesenchymal stem cells (MSCs) are limited to CD marker expression, plastic adherence and their ability to differentiate into adipogenic, osteogenic and chondrogenic precursors. It seems evident that stem cells undergoing differentiation should differ in many aspects, such as morphology and possibly also behaviour; however, such a correlation has not yet been exploited for fate prediction of MSCs. Primary human MSCs from bone marrow were expanded and pelleted to form high-density cultures and were then randomly divided into four groups to differentiate into adipogenic, osteogenic chondrogenic and myogenic progenitor cells. The cells were expanded as heterogeneous and tracked with time-lapse microscopy to record cell shape, using phase-contrast microscopy. The cells were segmented using a custom-made image-processing pipeline. Seven morphological features were extracted for each of the segmented cells. Statistical analysis was performed on the seven-dimensional feature vectors, using a tree-like classification method. Differentiation of cells was monitored with key marker genes and histology. Cells in differentiation media were expressing the key genes for each of the three pathways after 21 days, i.e. adipogenic, osteogenic and chondrogenic, which was also confirmed by histological staining. Time-lapse microscopy data were obtained and contained new evidence that two cell shape features, eccentricity and filopodia (= 'fingers') are highly informative to classify myogenic differentiation from all others. However, no robust classifiers could be identified for the other cell differentiation paths. The results suggest that non-invasive automated time-lapse microscopy could potentially be used to predict the stem cell fate of hMSCs for clinical application, based on morphology for earlier time-points. The classification is challenged by cell density, proliferation and possible unknown donor-specific factors, which affect the performance of morphology-based approaches. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Traditional methods do not actually measure peoples’ risk attitude naturally and precisely. Therefore, a fuzzy risk attitude classification method is developed. Since the prospect theory is usually considered as an effective model of decision making, the personalized parameters in prospect theory are firstly fuzzified to distinguish people with different risk attitudes, and then a fuzzy classification database schema is applied to calculate the exact value of risk value attitude and risk be- havior attitude. Finally, by applying a two-hierarchical clas- sification model, the precise value of synthetical risk attitude can be acquired.
Resumo:
In population studies, most current methods focus on identifying one outcome-related SNP at a time by testing for differences of genotype frequencies between disease and healthy groups or among different population groups. However, testing a great number of SNPs simultaneously has a problem of multiple testing and will give false-positive results. Although, this problem can be effectively dealt with through several approaches such as Bonferroni correction, permutation testing and false discovery rates, patterns of the joint effects by several genes, each with weak effect, might not be able to be determined. With the availability of high-throughput genotyping technology, searching for multiple scattered SNPs over the whole genome and modeling their joint effect on the target variable has become possible. Exhaustive search of all SNP subsets is computationally infeasible for millions of SNPs in a genome-wide study. Several effective feature selection methods combined with classification functions have been proposed to search for an optimal SNP subset among big data sets where the number of feature SNPs far exceeds the number of observations. ^ In this study, we take two steps to achieve the goal. First we selected 1000 SNPs through an effective filter method and then we performed a feature selection wrapped around a classifier to identify an optimal SNP subset for predicting disease. And also we developed a novel classification method-sequential information bottleneck method wrapped inside different search algorithms to identify an optimal subset of SNPs for classifying the outcome variable. This new method was compared with the classical linear discriminant analysis in terms of classification performance. Finally, we performed chi-square test to look at the relationship between each SNP and disease from another point of view. ^ In general, our results show that filtering features using harmononic mean of sensitivity and specificity(HMSS) through linear discriminant analysis (LDA) is better than using LDA training accuracy or mutual information in our study. Our results also demonstrate that exhaustive search of a small subset with one SNP, two SNPs or 3 SNP subset based on best 100 composite 2-SNPs can find an optimal subset and further inclusion of more SNPs through heuristic algorithm doesn't always increase the performance of SNP subsets. Although sequential forward floating selection can be applied to prevent from the nesting effect of forward selection, it does not always out-perform the latter due to overfitting from observing more complex subset states. ^ Our results also indicate that HMSS as a criterion to evaluate the classification ability of a function can be used in imbalanced data without modifying the original dataset as against classification accuracy. Our four studies suggest that Sequential Information Bottleneck(sIB), a new unsupervised technique, can be adopted to predict the outcome and its ability to detect the target status is superior to the traditional LDA in the study. ^ From our results we can see that the best test probability-HMSS for predicting CVD, stroke,CAD and psoriasis through sIB is 0.59406, 0.641815, 0.645315 and 0.678658, respectively. In terms of group prediction accuracy, the highest test accuracy of sIB for diagnosing a normal status among controls can reach 0.708999, 0.863216, 0.639918 and 0.850275 respectively in the four studies if the test accuracy among cases is required to be not less than 0.4. On the other hand, the highest test accuracy of sIB for diagnosing a disease among cases can reach 0.748644, 0.789916, 0.705701 and 0.749436 respectively in the four studies if the test accuracy among controls is required to be at least 0.4. ^ A further genome-wide association study through Chi square test shows that there are no significant SNPs detected at the cut-off level 9.09451E-08 in the Framingham heart study of CVD. Study results in WTCCC can only detect two significant SNPs that are associated with CAD. In the genome-wide study of psoriasis most of top 20 SNP markers with impressive classification accuracy are also significantly associated with the disease through chi-square test at the cut-off value 1.11E-07. ^ Although our classification methods can achieve high accuracy in the study, complete descriptions of those classification results(95% confidence interval or statistical test of differences) require more cost-effective methods or efficient computing system, both of which can't be accomplished currently in our genome-wide study. We should also note that the purpose of this study is to identify subsets of SNPs with high prediction ability and those SNPs with good discriminant power are not necessary to be causal markers for the disease.^
Resumo:
Woodland savannahs provide essential ecosystem functions and services to communities. On the African continent, they are widely utilized and converted to intensive land uses. This study investigates the land cover changes of 108,038 km**2 in NE Namibia using multi-temporal, multi-sensor Landsat imagery, at decadal intervals from 1975 to 2014, with a post-classification change detection method and supervised Regression Tree classifiers. We discuss likely impacts of land tenure and reforms over the past four decades on changes in land use and land cover. These changes included losses, gains and exchanges between predominant land cover classes. Exchanges comprised logical conversions between woodland and agricultural classes, implying woodland clearing for arable farming, cropland abandonment and vegetation succession. The most dominant change was a reduction in the area of the woodland class due to the expansion of the agricultural class, specifically, small-scale cereal and pastoral production. Woodland area decreased from 90% of the study area in 1975 to 83% in 2014, while cleared land increased from 9% to 14%. We found that the main land cover changes are conversion from woodland to agricultural and urban land uses, driven by urban expansion and woodland clearing for subsistence-based agriculture and pastoralism.
Resumo:
Modified oligonucleotides containing sulphur group have been useful tools for studies of carcinogenesis, protein or nucleic acid structures and functions, protein-nucleic acid interactions, and for antisense modulation of gene expression. One successful example has been the synthesis and study of oligodeoxynucleotides containing 6-thio-2'-deoxyguanine. 6-Thio-2-deoxyguanosine was first discovered as metabolic compound of 6- mercaptopurine (6-MP). Later, it was applied as drug to cure leukaemia. During the research of its toxicity, a method was developed to use the sulphur group as a versatile position for post-synthetic modification. The advantage of application of post-synthetic modification lies in its convenience. Synthesis of oligomers with normal sequences has become routine work in most laboratories. However, design and synthesis of a proper phosphoramidite monomer for a new modified nucleoside are always difficult tasks even for a skilful chemist. Thus an alternative method (post-synthetic method) has been invented to overcome the difficulties. This was achieved by incorporation of versatile nucleotides into oligomers which contain a leaving group, that is sufficiently stable to withstand the conditions of synthesis but can be substituted by nucleophiles after synthesis, to produce, a series of oligomers each containing a different modified base. In the current project, a phosphoramidite monomer with 6-thioguanine has been successfully synthesised and incorporated into RNA. A deprotection procedure, which is specific for RNA was designed for oligomers containing 6-thioguanosine. The results were validated by various methods (UV, HPLC, enzymatic digestion). Pioneer work in utilization of the versatile sulphur group for post-synthetic modification was also tested. Post-synthetic modification was also carried out on DNA with 6- deoxythioguanosine. Electrophilic reagents with various functional groups (alphatic, aromatic, fluorescent) and bi-functional groups have been attached with the oligomers.
Resumo:
* This study was supported in part by the Natural Sciences and Engineering Research Council of Canada, and by the Gastrointestinal Motility Laboratory (University of Alberta Hospitals) in Edmonton, Alberta, Canada.
Resumo:
Background Monocytes are implicated in the initiation and progression of the atherosclerotic plaque contributing to its instability and rupture. Although peripheral monocytosis has been related to poor clinical outcome post ST elevation myocardial infarction (STEMI), only scarce information is available of mechanisms of this association. Tumour necrosis factor alpha (TNFα) is a key cytokine in the acute phase inflammatory response, and it is predominantly produced by inflammatory macrophages. Little is known about TNFα association with circulating monocyte subpopulations post STEMI. Method A total of 142 STEMI patients (mean age 62±13 years; 72% male) treated with percutaneous revascularization were recruited with blood samples obtained within first 24 hours from the onset and on day 10-14. Peripheral blood monocyte subpopulations were enumerated and characterized using flow cytometry after staining for CD14, CD16 and CCR2 and were defined as: CD14++CD16-CCR2+ (Mon1), CD14++CD16+CCR+ (Mon2) and CD14+CD16++CCR2- (Mon3) cells. Plasma levels of TNFα were measured by enzyme-linked immunosorbent assay (ELISA, Peprotec system, UK). Major adverse cardiac events (MACE), defined as recurrent STEMI, new diagnosis of heart failure and death were recorded at follow up, mean of 164±134 days. Results TNFα levels were significantly higher 24 hours post STEMI, compared to day 14 (paired t-test, p <0.001) with day 1 levels weakly correlated with total monocyte count as well as Mon1 (Spearman’s correlation, r=0.19, p=0.02 and r=0.22, p=0.01, respectively). There was no correlation between TNFα and Mon2 or Mon3 subpopulations. TNFα levels were significantly higher in patients with a recorded MACE (n=28, Mann-Whitney test, p<0.001) (figure 1).⇓
Resumo:
Inspired by human visual cognition mechanism, this paper first presents a scene classification method based on an improved standard model feature. Compared with state-of-the-art efforts in scene classification, the newly proposed method is more robust, more selective, and of lower complexity. These advantages are demonstrated by two sets of experiments on both our own database and standard public ones. Furthermore, occlusion and disorder problems in scene classification in video surveillance are also first studied in this paper. © 2010 IEEE.
Resumo:
The purpose of this project was to evaluate the use of remote sensing 1) to detect and map Everglades wetland plant communities at different scales; and 2) to compare map products delineated and resampled at various scales with the intent to quantify and describe the quantitative and qualitative differences between such products. We evaluated data provided by Digital Globe’s WorldView 2 (WV2) sensor with a spatial resolution of 2m and data from Landsat’s Thematic and Enhanced Thematic Mapper (TM and ETM+) sensors with a spatial resolution of 30m. We were also interested in the comparability and scalability of products derived from these data sources. The adequacy of each data set to map wetland plant communities was evaluated utilizing two metrics: 1) model-based accuracy estimates of the classification procedures; and 2) design-based post-classification accuracy estimates of derived maps.