910 resultados para Positioning precision


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work evaluates the effect of wavelength positioning errors in spectral scans on analytical results when the Kalman filtering technique is used for the correction of line interferences in inductively coupled plasma atomic emission spectrometry (ICP-AES). The results show that a positioning accuracy of 0.1 pm is required in order to obtain accurate and precise estimates for analyte concentrations. The positioning error in sample scans is more crucial than that in model scans. The relative bias in measured analyte concentration originating from a positioning error in a sample scan increases linearly with an increase in the magnitude of the error and the peak distance of the overlapping lines, but is inversely proportional to the signal-to-background ratio. By the use of an optimization procedure for the positions of scans with the innovations number as the criterion, the wavelength positioning error can be reduced and, correspondingly, the accuracy and precision of analytical results improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Recent studies suggest that there is a learning curve for metal-on-metal hip resurfacing. The purpose of this study was to assess whether implant positioning changed with surgeon experience and whether positioning and component sizing were associated with implant longevity. METHODS: We evaluated the first 361 consecutive hip resurfacings performed by a single surgeon, which had a mean follow-up of 59 months (range, 28 to 87 months). Pre and post-operative radiographs were assessed to determine the inclination of the acetabular component, as well as the sagittal and coronal femoral stem-neck angles. Changes in the precision of component placement were determined by assessing changes in the standard deviation of each measurement using variance ratio and linear regression analysis. Additionally, the cup and stem-shaft angles as well as component sizes were compared between the 31 hips that failed over the follow-up period and the surviving components to assess for any differences that might have been associated with an increased risk for failure. RESULTS: Surgeon experience was correlated with improved precision of the antero-posterior and lateral positioning of the femoral component. However, femoral and acetabular radiographic implant positioning angles were not different between the surviving hips and failures. The failures had smaller mean femoral component diameters as compared to the non-failure group (44 versus 47 millimeters). CONCLUSIONS: These results suggest that there may be differences in implant positioning in early versus late learning curve procedures, but that in the absence of recognized risk factors such as intra-operative notching of the femoral neck and cup inclination in excess of 50 degrees, component positioning does not appear to be associated with failure. Nevertheless, surgeons should exercise caution in operating patients with small femoral necks, especially when they are early in the learning curve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future emerging market trends head towards positioning based services placing a new perspective on the way we obtain and exploit positioning information. On one hand, innovations in information technology and wireless communication systems enabled the development of numerous location based applications such as vehicle navigation and tracking, sensor networks applications, home automation, asset management, security and context aware location services. On the other hand, wireless networks themselves may bene t from localization information to improve the performances of di erent network layers. Location based routing, synchronization, interference cancellation are prime examples of applications where location information can be useful. Typical positioning solutions rely on measurements and exploitation of distance dependent signal metrics, such as the received signal strength, time of arrival or angle of arrival. They are cheaper and easier to implement than the dedicated positioning systems based on ngerprinting, but at the cost of accuracy. Therefore intelligent localization algorithms and signal processing techniques have to be applied to mitigate the lack of accuracy in distance estimates. Cooperation between nodes is used in cases where conventional positioning techniques do not perform well due to lack of existing infrastructure, or obstructed indoor environment. The objective is to concentrate on hybrid architecture where some nodes have points of attachment to an infrastructure, and simultaneously are interconnected via short-range ad hoc links. The availability of more capable handsets enables more innovative scenarios that take advantage of multiple radio access networks as well as peer-to-peer links for positioning. Link selection is used to optimize the tradeo between the power consumption of participating nodes and the quality of target localization. The Geometric Dilution of Precision and the Cramer-Rao Lower Bound can be used as criteria for choosing the appropriate set of anchor nodes and corresponding measurements before attempting location estimation itself. This work analyzes the existing solutions for node selection in order to improve localization performance, and proposes a novel method based on utility functions. The proposed method is then extended to mobile and heterogeneous environments. Simulations have been carried out, as well as evaluation with real measurement data. In addition, some speci c cases have been considered, such as localization in ill-conditioned scenarios and the use of negative information. The proposed approaches have shown to enhance estimation accuracy, whilst signi cantly reducing complexity, power consumption and signalling overhead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nondestructive determination of plant total dry matter (TDM) in the field is greatly preferable to the harvest of entire plots in areas such as the Sahel where small differences in soil properties may cause large differences in crop growth within short distances. Existing equipment to nondestructively determine TDM is either expensive or unreliable. Therefore, two radiometers for measuring reflected red and near-infrared light were designed, mounted on a single wheeled hand cart and attached to a differential Global Positioning System (GPS) to measure georeferenced variations in normalized difference vegetation index (NDVI) in pearl millet fields [Pennisetum glaucum (L.) R. Br.]. The NDVI measurements were then used to determine the distribution of crop TDM. The two versions of the radiometer could (i) send single NDVI measurements to the GPS data logger at distance intervals of 0.03 to 8.53 m set by the user, and (ii) collect NDVI values averaged across 0.5, 1, or 2 m. The average correlation between TDM of pearl millet plants in planting hills and their NDVI values was high (r^2 = 0.850) but varied slightly depending on solar irradiance when the instrument was calibrated. There also was a good correlation between NDVI, fractional vegetation cover derived from aerial photographs and millet TDM at harvest. Both versions of the rugged instrument appear to provide a rapid and reliable way of mapping plant growth at the field scale with a high spatial resolution and should therefore be widely tested with different crops and soil types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Georeferencing is one of the major tasks of satellite-borne remote sensing. Compared to traditional indirect methods, direct georeferencing through a Global Positioning System/inertial navigation system requires fewer and simpler steps to obtain exterior orientation parameters of remotely sensed images. However, the pixel shift caused by geographic positioning error, which is generally derived from boresight angle as well as terrain topography variation, can have a great impact on the precision of georeferencing. The distribution of pixel shifts introduced by the positioning error on a satellite linear push-broom image is quantitatively analyzed. We use the variation of the object space coordinate to simulate different kinds of positioning errors and terrain topography. Then a total differential method was applied to establish a rigorous sensor model in order to mathematically obtain the relationship between pixel shift and positioning error. Finally, two simulation experiments are conducted using the imaging parameters of Chang’ E-1 satellite to evaluate two different kinds of positioning errors. The experimental results have shown that with the experimental parameters, the maximum pixel shift could reach 1.74 pixels. The proposed approach can be extended to a generic application for imaging error modeling in remote sensing with terrain variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of projecting multidimensional data into lower dimensions has been pursued by many researchers due to its potential application to data analyses of various kinds. This paper presents a novel multidimensional projection technique based on least square approximations. The approximations compute the coordinates of a set of projected points based on the coordinates of a reduced number of control points with defined geometry. We name the technique Least Square Projections ( LSP). From an initial projection of the control points, LSP defines the positioning of their neighboring points through a numerical solution that aims at preserving a similarity relationship between the points given by a metric in mD. In order to perform the projection, a small number of distance calculations are necessary, and no repositioning of the points is required to obtain a final solution with satisfactory precision. The results show the capability of the technique to form groups of points by degree of similarity in 2D. We illustrate that capability through its application to mapping collections of textual documents from varied sources, a strategic yet difficult application. LSP is faster and more accurate than other existing high-quality methods, particularly where it was mostly tested, that is, for mapping text sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GPS precise point positioning (PPP) can provide high precision 3-D coordinates. Combined pseudorange and carrier phase observables, precise ephemeris and satellite clock corrections, together with data from dual frequency receivers, are the key factors for providing such levels of precision (few centimeters). In general, results obtained from PPP are referenced to an arbitrary reference frame, realized from a previous free network adjustment, in which satellite state vectors, station coordinates and other biases are estimated together. In order to obtain consistent results, the coordinates have to be transformed to the relevant reference frame and the appropriate daily transformation parameters must be available. Furthermore, the coordinates have to be mapped to a chosen reference epoch. If a velocity field is not available, an appropriated model, such as NNR-NUVEL-IA, has to be used. The quality of the results provided by this approach was evaluated using data from the Brazilian Network for Continuous Monitoring of the Global Positioning System (RBMC), which was processed using GIPSY-OASIS 11 software. The results obtained were compared to SIRGAS 1995.4 and ITRF2000, and reached precision better than 2cm. A description of the fundamentals of the PPP approach and its application in the integration of regional GPS networks with ITRF is the main purpose of this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systematic errors can have a significant effect on GPS observable. In medium and long baselines the major systematic error source are the ionosphere and troposphere refraction and the GPS satellites orbit errors. But, in short baselines, the multipath is more relevant. These errors degrade the accuracy of the positioning accomplished by GPS. So, this is a critical problem for high precision GPS positioning applications. Recently, a method has been suggested to mitigate these errors: the semiparametric model and the penalised least squares technique. It uses a natural cubic spline to model the errors as a function which varies smoothly in time. The systematic errors functions, ambiguities and station coordinates, are estimated simultaneously. As a result, the ambiguities and the station coordinates are estimated with better reliability and accuracy than the conventional least square method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New Galileo signals have great potential for pseudorange-based surveying and mapping in both optimal open-sky conditions and suboptimal under-canopy environments. This article reviews the main features of Galileo's E5 AItBO( and El (BOC signals, describes generation of realistic E5 and El pseudoranges with and without multipath sources, and presents anticipated horizontal positioning accuracy results, ranging from 4 centimeters (open-sky) to 14 centimeters (under-canopy) for E5/El.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigated the effects of frequency and precision of feedback on the learning of a dual-motor task. One hundred and twenty adults were randomly assigned to six groups of different knowledge of results (KR), frequency (100%, 66% or 33%) and precision (specific or general) levels. In the stabilization phase, participants performed the dual task (combination of linear positioning and manual force control) with the provision of KR. Ten non-KR adaptation trials were performed for the same task, but with the introduction of an electromagnetic opposite traction force. The analysis showed a significant main effect for frequency of KR. The participants who received KR in 66% of the stabilization trials showed superior adaptation performance than those who received 100% or 33%. This finding reinforces that there is an optimal level of information, neither too high nor too low, for motor learning to be effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today electronic portal imaging devices (EPID's) are used primarily to verify patient positioning. They have, however, also the potential as 2D-dosimeters and could be used as such for transit dosimetry or dose reconstruction. It has been proven that such devices, especially liquid filled ionization chambers, have a stable dose response relationship which can be described in terms of the physical properties of the EPID and the pulsed linac radiation. For absolute dosimetry however, an accurate method of calibration to an absolute dose is needed. In this work, we concentrate on calibration against dose in a homogeneous water phantom. Using a Monte Carlo model of the detector we calculated dose spread kernels in units of absolute dose per incident energy fluence and compared them to calculated dose spread kernels in water at different depths. The energy of the incident pencil beams varied between 0.5 and 18 MeV. At the depth of dose maximum in water for a 6 MV beam (1.5 cm) and for a 18 MV beam (3.0 cm) we observed large absolute differences between water and detector dose above an incident energy of 4 MeV but only small relative differences in the most frequent energy range of the beam energy spectra. It is shown that for a 6 MV beam the absolute reference dose measured at 1.5 cm water depth differs from the absolute detector dose by 3.8%. At depth 1.2 cm in water, however, the relative dose differences are almost constant between 2 and 6 MeV. The effects of changes in the energy spectrum of the beam on the dose responses in water and in the detector are also investigated. We show that differences larger than 2% can occur for different beam qualities of the incident photon beam behind water slabs of different thicknesses. It is therefore concluded that for high-precision dosimetry such effects have to be taken into account. Nevertheless, the precise information about the dose response of the detector provided in this Monte Carlo study forms the basis of extracting directly the basic radiometric quantities photon fluence and photon energy fluence from the detector's signal using a deconvolution algorithm. The results are therefore promising for future application in absolute transit dosimetry and absolute dose reconstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Range estimation is the core of many positioning systems such as radar, and Wireless Local Positioning Systems (WLPS). The estimation of range is achieved by estimating Time-of-Arrival (TOA). TOA represents the signal propagation delay between a transmitter and a receiver. Thus, error in TOA estimation causes degradation in range estimation performance. In wireless environments, noise, multipath, and limited bandwidth reduce TOA estimation performance. TOA estimation algorithms that are designed for wireless environments aim to improve the TOA estimation performance by mitigating the effect of closely spaced paths in practical (positive) signal-to-noise ratio (SNR) regions. Limited bandwidth avoids the discrimination of closely spaced paths. This reduces TOA estimation performance. TOA estimation methods are evaluated as a function of SNR, bandwidth, and the number of reflections in multipath wireless environments, as well as their complexity. In this research, a TOA estimation technique based on Blind signal Separation (BSS) is proposed. This frequency domain method estimates TOA in wireless multipath environments for a given signal bandwidth. The structure of the proposed technique is presented and its complexity and performance are theoretically evaluated. It is depicted that the proposed method is not sensitive to SNR, number of reflections, and bandwidth. In general, as bandwidth increases, TOA estimation performance improves. However, spectrum is the most valuable resource in wireless systems and usually a large portion of spectrum to support high performance TOA estimation is not available. In addition, the radio frequency (RF) components of wideband systems suffer from high cost and complexity. Thus, a novel, multiband positioning structure is proposed. The proposed technique uses the available (non-contiguous) bands to support high performance TOA estimation. This system incorporates the capabilities of cognitive radio (CR) systems to sense the available spectrum (also called white spaces) and to incorporate white spaces for high-performance localization. First, contiguous bands that are divided into several non-equal, narrow sub-bands that possess the same SNR are concatenated to attain an accuracy corresponding to the equivalent full band. Two radio architectures are proposed and investigated: the signal is transmitted over available spectrum either simultaneously (parallel concatenation) or sequentially (serial concatenation). Low complexity radio designs that handle the concatenation process sequentially and in parallel are introduced. Different TOA estimation algorithms that are applicable to multiband scenarios are studied and their performance is theoretically evaluated and compared to simulations. Next, the results are extended to non-contiguous, non-equal sub-bands with the same SNR. These are more realistic assumptions in practical systems. The performance and complexity of the proposed technique is investigated as well. This study’s results show that selecting bandwidth, center frequency, and SNR levels for each sub-band can adapt positioning accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: To evaluate the usefulness of ultrasound imaging to improve the positioning of the recording needle for nerve conduction studies (NCS) of the sural nerve. METHODS: Orthodromic NCS of the sural nerve was performed in 44 consecutive patients evaluated for polyneuropathy. Ultrasound-guided needle positioning (USNP) was compared to conventional "blind" needle positioning (BNP), electrically guided needle positioning (EGNP), and to recordings with surface electrodes (SFN). RESULTS: The mean distance between the needle tip and the nerve was 1.1 mm with USNP compared to 5.1 mm with BNP (p<0.0001). The mean amplitude of the sensory nerve action potential (SNAP) was 21 microV with USNP and 11 microV with BNP (p<0.0001). Compared to BNP, nerve-needle distances and SNAP amplitudes did not improve with EGNP. SNAP amplitudes recorded with SFN were significantly smaller than with BNP, EGNP and USNP. CONCLUSION: Ultrasound increases the precision of needle positioning markedly, compared to conventional methods. The amplitude of the recorded SNAP is usually clearly greater using USNP. In addition, USNP is faster, less painful and less dependent on the patient. SIGNIFICANCE: USNP is superior to BNP, EGNP, and SFN in accurate measurement of SNAP amplitude. It has a potential use in the routine near-nerve needle sensory NCS of pure sensory nerves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, there has been a great increase in the development of wireless technologies and location services. For this reason, numerous projects in the location field, have arisen. In addition, with the appearance of the open Android operating system, wireless technologies are being developed faster than ever. This Project approaches the design and development of a system that combines the technologies of wireless, location and Android with the implementation of an indoor positioning system. As a result, an Android application has been obtained, which detects the position of a phone in a simple and useful way. The application is based on the WIFI manager API of Android. It combines the data stored in a SQL database with the wifi data received at any given time. Afterwards the position of the user is determined with the algorithm that has been implemented. This application is able to obtain the position of any person who is inside a building with Wi-Fi coverage, and display it on the screen of any device with the Android operating system. Besides the estimation of the position, this system displays a map that helps you see in which quadrant of the room are positioned in real time. This system has been designed with a simple interface to allow people without technology knowledge. Finally, several tests and simulations of the system have been carried out to see its operation and accuracy. The performance of the system has been verified in two different places and changes have been made in the Java code to improve its precision and effectiveness. As a result of the several tests, it has been noticed that the placement of the access point (AP) and the configuration of the Wireless network is an important point that should be taken into account to avoid interferences and errors as much as possible, in the estimation of the position. RESUMEN. En los últimos años, se ha producido un incremento en el desarrollo de tecnologías inalámbricas y en servicios de localización y posicionamiento. Por esta razón, han surgido numerosos proyectos relacionados con estas tecnologías. Por otra parte, un punto importante en el desarrollo de estas tecnologías ha sido la aparición del lenguaje Android que ha hecho que estas nuevas tecnologías se implementaran con una mayor rapidez. Este proyecto, se acerca al diseño y desarrollo de un sistema que combina tecnologías inalámbricas, de ubicación y uso de lenguaje Android para el desarrollo de una aplicación de un sistema de posicionamiento en interiores. Como consecuencia de esto se ha obtenido una aplicación Android que detecta la posición de un dispositivo móvil de una manera sencilla e intuititva. La aplicación se basa en la API WIFI de Android, que combina los datos almacenados en una base de datos SQL con los datos recibidos vía Wi-Fi en cualquier momento. A continuación, la posición del usuario se determina con el algoritmo que se ha implementado a lo largo de todo el proyecto utilizando código Android. Esta aplicación es capaz de obtener la posición de cualquier persona que se encuentra dentro de un edificio con cobertura Wi-Fi, mostrando por pantalla la ubicación del usuario en cualquier dispositivo que disponga de sistema operativo Android. Además de la estimación de la posición, este sistema muestra un mapa que le ayuda a ver en qué cuadrante de la sala está situado el usuario. Este sistema ha sido diseñado con una interfaz sencilla para permitir que usuarios sin conocimiento tecnológico o no acostumbrados al uso de los nuevos dispositivos de hoy en día puedan usarlo de una manera sencilla y de forma intuitiva. Por último, se han llevado a cabo varias pruebas y simulaciones del sistema para verificar su funcionamiento y precisión. El rendimiento del sistema se ha comprobado en dos puntos diferentes de la sala (lugar donde se han hecho todas las pruebas y desarrollado la aplicación) realizando cambios en el código Java para mejorar aún más la precisión y eficacia del posicionamiento. Como resultado de todo esto, se ha comprobado que la ubicación del punto de acceso (AP) y la configuración de la red inalámbrica es importante, y por ello se debe de tener en cuenta para evitar interferencias y tantos errores como sea posible en la estimación de la posición.