955 resultados para Population parameters
Resumo:
The objective of this study was to evaluate the effective number of founders and ancestors, generation intervals and completeness of pedigree in Jaffarabadi breed buffaloes raised in Brazil. Pedigree records of 1,272 animals born from 1966 were used. The parameters were estimated using ENDOG, computational population genetic software. The obtained value for completeness of pedigree was 99.5, 50.9, and 20.5 for, the first, second and third generations, respectively. Generation interval estimates expressed in years and considering different pathways were 12.28 +/- 6.90 (sire-son), 11.55 +/- 6.07 (sire-daughter), 8.20 +/- 2.63 (dam-son) and 8.794 +/-.33 (dam-daughter). The overall average generation interval was 10.17 +/- 5.43 years. The number of founders, equivalent founders and ancestor animals that contributed for the genetic diversity in the reference population (1059) were 136, 130 and 134, respectively. Effective number of founder (f(e)=8) and ancestors (f(a)=7) were small, and the calculated expected inbreeding increase per generation was 4.99%. Four ancestors explained 50% of the genetic variability in the population and the major ancestor contributed with approximately 33% of the total population genetic variation. The genetic diversity within the current population is low as a consequence of a reduced number of ancestors.
Resumo:
Below are the results of the survey of the Iberian lynx obtained with camera-trapping between 2000 and 2007 in Sierra Morena. Two very important aspects of camera-trapping concerning its efficiency are also analyzed. The first is the evolution along years according to the camera-trapping type used of two efficiency indicators. The results obtained demonstrate that the most efficient lure is rabbit, though it is the less proven (92 trap-nights), followed by camera-trapping in the most frequent marking places (latrines). And, we propose as a novel the concept of use area as a spatial reference unit for the camera-trapping monitoring of non radio-marked animals is proposed, and its validity discussed.
Resumo:
Lognormal distribution has abundant applications in various fields. In literature, most inferences on the two parameters of the lognormal distribution are based on Type-I censored sample data. However, exact measurements are not always attainable especially when the observation is below or above the detection limits, and only the numbers of measurements falling into predetermined intervals can be recorded instead. This is the so-called grouped data. In this paper, we will show the existence and uniqueness of the maximum likelihood estimators of the two parameters of the underlying lognormal distribution with Type-I censored data and grouped data. The proof was first established under the case of normal distribution and extended to the lognormal distribution through invariance property. The results are applied to estimate the median and mean of the lognormal population.
Resumo:
Etmopterus pusillus is a deep water lantern shark with a widespread global distribution that is caught in large quantities in some areas, but is usually discarded due to the low commercial value. In this work, the population biology was studied and life history parameters determined for the first time in this species. Age was estimated from sections of the second dorsal spine and validated by marginal increment analysis. Males attained a maximum age of 13 years, while 17-year-old females were found. Several growth models were fitted and compared for both size and weight at age data, showing that even though this is a small sized species, it has a relatively slow growth rate. This species matures late and at a relatively large size: at 86.81% and 79.40% of the maximum observed sizes and at 58.02% and 54.40% of the maximum observed ages for males and females, respectively. It has a low fecundity, with a mean ovarian fecundity of 10.44 oocytes per reproductive cycle. The estimated parameters indicate that this species has a vulnerable life cycle, typical of deep water squalid sharks. Given the high fishing pressures that it is suffering in the NE Atlantic, the smooth lantern shark may be in danger of severe declines in the near future. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Lake sturgeon Acipenser fulvescens restoration is a priority throughout the Great Lakes basin, where sturgeon have been reduced to less than 1% of historic levels due to habitat degradation, overharvest, and fragmentation of spawning populations. The population parameters most important to long-term lake sturgeon persistence are unknown.
Resumo:
Carrying capacity assessments model a population’s potential self-sufficiency. A crucial first step in the development of such modelling is to examine the basic resource-based parameters defining the population’s production and consumption habits. These parameters include basic human needs such as food, water, shelter and energy together with climatic, environmental and behavioural characteristics. Each of these parameters imparts land-usage requirements in different ways and varied degrees so their incorporation into carrying capacity modelling also differs. Given that the availability and values of production parameters may differ between locations, no two carrying capacity models are likely to be exactly alike. However, the essential parameters themselves can remain consistent so one example, the Carrying Capacity Dashboard, is offered as a case study to highlight one way in which these parameters are utilised. While examples exist of findings made from carrying capacity assessment modelling, to date, guidelines for replication of such studies in other regions and scales have largely been overlooked. This paper addresses such shortcomings by describing a process for the inclusion and calibration of the most important resource-based parameters in a way that could be repeated elsewhere.
Resumo:
In genetic epidemiology, population-based disease registries are commonly used to collect genotype or other risk factor information concerning affected subjects and their relatives. This work presents two new approaches for the statistical inference of ascertained data: a conditional and full likelihood approaches for the disease with variable age at onset phenotype using familial data obtained from population-based registry of incident cases. The aim is to obtain statistically reliable estimates of the general population parameters. The statistical analysis of familial data with variable age at onset becomes more complicated when some of the study subjects are non-susceptible, that is to say these subjects never get the disease. A statistical model for a variable age at onset with long-term survivors is proposed for studies of familial aggregation, using latent variable approach, as well as for prospective studies of genetic association studies with candidate genes. In addition, we explore the possibility of a genetic explanation of the observed increase in the incidence of Type 1 diabetes (T1D) in Finland in recent decades and the hypothesis of non-Mendelian transmission of T1D associated genes. Both classical and Bayesian statistical inference were used in the modelling and estimation. Despite the fact that this work contains five studies with different statistical models, they all concern data obtained from nationwide registries of T1D and genetics of T1D. In the analyses of T1D data, non-Mendelian transmission of T1D susceptibility alleles was not observed. In addition, non-Mendelian transmission of T1D susceptibility genes did not make a plausible explanation for the increase in T1D incidence in Finland. Instead, the Human Leucocyte Antigen associations with T1D were confirmed in the population-based analysis, which combines T1D registry information, reference sample of healthy subjects and birth cohort information of the Finnish population. Finally, a substantial familial variation in the susceptibility of T1D nephropathy was observed. The presented studies show the benefits of sophisticated statistical modelling to explore risk factors for complex diseases.
Resumo:
Cabomba caroliniana is a submersed aquatic macrophyte that originates from the Americas and is currently invading temperate, subtropical, and tropical freshwater habitats around the world. Despite being a nuisance in many countries, little is known about its ecology. We monitored C. caroliniana populations in three reservoirs in subtropical Queensland, Australia, over 5.5 years. Although biomass, stem length, and plant density of the C. caroliniana stands fluctuated over time, they did not exhibit clear seasonal patterns. Water depth was the most important environmental factor explaining C. caroliniana abundance. Plant biomass was greatest at depths from 2–4 m and rooted plants were not found beyond 5 m. Plant density was greatest in shallow water and decreased with depth, most likely as a function of decreasing light and increasing physical stress. We tested the effect of a range of water physico-chemical parameters. The concentration of phosphorus in the water column was the variable that explained most of the variation in C. caroliniana population parameters. We found that in subtropical Australia, C. caroliniana abundance does not appear to be affected by seasonal conditions but is influenced by other environmental variables such as water depth and nutrient loading. Therefore, further spread will more likely be governed by local habitat rather than climatic conditions.
Resumo:
Cabomba caroliniana is a submersed aquatic macrophyte that originates from the Americas and is currently invading temperate, subtropical, and tropical freshwater habitats around the world. Despite being a nuisance in many countries, little is known about its ecology. We monitored C. caroliniana populations in three reservoirs in subtropical Queensland, Australia, over 5.5 years. Although biomass, stem length, and plant density of the C. caroliniana stands fluctuated over time, they did not exhibit clear seasonal patterns. Water depth was the most important environmental factor explaining C. caroliniana abundance. Plant biomass was greatest at depths from 2–4 m and rooted plants were not found beyond 5 m. Plant density was greatest in shallow water and decreased with depth, most likely as a function of decreasing light and increasing physical stress. We tested the effect of a range of water physico-chemical parameters. The concentration of phosphorus in the water column was the variable that explained most of the variation in C. caroliniana population parameters. We found that in subtropical Australia, C. caroliniana abundance does not appear to be affected by seasonal conditions but is influenced by other environmental variables such as water depth and nutrient loading. Therefore, further spread will more likely be governed by local habitat rather than climatic conditions.
Resumo:
Population parameters of Lepturacanthus savala from the trawl catches in the north-eastern part of the Bay of Bengal, Bangladesh were investigated based on length frequency data, using complete ELEFAN computer program. The asymptotic length (Lα) and growth constant (K) were estimated to be 106.50 cm (total length) and 0.80/year respectively. Based on these growth parameters, the total mortality (Z) was estimated to be 1.89. The estimated values for natural mortality (M) and fishing mortality (F) were 1.08 and 0.81 respectively. The estimated value for the exploitation rate (E) using the length converted catch curve was 0.43. The recruitment pattern showed two peaks per year. The estimated sizes of L. savala at 25, 50 and 75% probabilities of capture were 57.49, 60.39 and 63.28 cm respectively. The estimated length weight relationship for combined sex was W=0.00093 TL(super)2.97
Resumo:
FiSAT program was used to estimate population parameters of Upenaeus sulphureus from length frequency data. Loc and K were found to be 22.7 em and 0.98 year1 respectively. The Wetherall plot provided an estimate of L= and Z/K were 21.585 em and 4.759 respectively. The annual rate of natural and fishing mortality were estimated as 1.91 and 3.86 respectively. The exploitation rate was 0.668. The selection pattern Lc was 10.824 em. Recruitment pattern suggest of two uneven seasonal pulses in March-April and August-October. Peaks appeared in August-October. Maximum yield could be achieved simultaneously increasing length at first capture to 10.0 em. The length weight relationship was found to be W =0.03065 Lz.8328. Highest yield and price could be achieved by decreasing the fishing mortality to 0.9 coefficient rate.
Resumo:
Population parameters of Jhonius argentatus and Johnieops vogleri in coastal waters of Bay of Bengal, Bangladesh were estimated by using FiSAT programme. The von Bertalanffy growth parameters, extreme length (cm) and growth constant K (year ·1) were found to be 46.50 and 0.59 for J. argentatus, and 33.50 and 0.85 for J.vogleri The Loc(cm) and Z/K estimates provided by Wetherall plot were 46.694 and 1.791 for J. argentatus, and 31.25 and 2.623 for J. vogleri. The annual rate of natural (M) and fishing mortality (F) were estimated as 1.12 and 0.78 for J. argentatus, and 1.56 and 1.28 for J. vogleri. Rate of exploitation (E) was estimated as 0.41 for J. argentatus and 0.45 for J. vogleri. About 80.04% of J. argentatus were found to be recruited during peak pulses (April-May) and 19.96% during lean pulses (October-November) and 85.75% J. vogleri during peak pulses (May-July) and 14.25% during lean pulses (September-October). The growth performance index(') was 3.11 for J. argentatus and 1.93 for J. vogleri. The total length and body weight relationship was found to be W = 0.0403 TL25723 for J. argentatus and W = 0.0907 TV3482 for J. vogleri.
Resumo:
FiSAT program was used to estimate population parameters of Rastrelliger kanagurta from length frequency data. Loc and K were found to be 27.4 em and 0.90 year1 respectively. The Wetherall plot provided an estimate of Loc and Z/K were 26.7 cm and 4.683 respectively. The annual rate of natural and fishing mortality were estimated as 1.71 and 3.21 respectively. The exploitation rate was 0.652. The selection pattern L50 was 18.09 cm. Recruitment pattern suggests two seasonal pulses one in March-May and another in September-October. Peak recruitment appeared in March-May. Maximum yield could be achieved by decreasing length at first capture to 13.0 em. The relationship between total length and body weight was found to be W = 0.01583 L8952. Yield and stock prediction analysis suggested that highest yield and price could be achieved by decreasing the fishing mortality to 2.0 coefficient rate.