72 resultados para Polyols
Resumo:
195 p.
Resumo:
Fibromyalgia (FM) is a chronic, rheumatic disease characterized by widespread myofascial pain, of unknown aetiology, having a major impact on quality of life (QOL). Available pharmacotherapy for FM is marginally effective. FM is associated with co-morbidities of gastrointestinal (GI) disorders and Irritable Bowel Syndrome (IBS). There is growing evidence that diets low in FODMAPs, “fermentable oligo-, di- or mono-saccharides and polyols” [Low FODMAP Diet (LFD)], are effective in treating IBS. The aim of this pilot study was to examine the effects of LFDs on symptoms of FM, especially with regard to pain, QOL and GI disorders. Methods A longitudinal study using LFD intervention was performed on 38, 51 ± 10 year-old, female patients diagnosed with FM for an average of 10 years, based on ACR (American College of Rheumatology) 2010 criteria. The study was conducted from January through May, 2015, using a four-week, repeated-assessment model, as follows: Moment 0 – introduction of the protocol to participants; Moment 1 – first assessment and delivery of individual LFD dietary plans; Moment 2 – second assessment and reintroduction of FODMAPs; Moment 3 – last assessment and final nutritional counselling. Assessment tools used were the following: RFIQ (Revised Fibromyalgia Impact Questionnaire), FSQ (Fibromyalgia Survey Questionnaire), IBS-SSS (Severity Score System), EQ-5D (Euro-QOL quality of life instrument), and VAS (Visual Analogue Scale). Daily consumption of FODMAPs was quantified based on published food content analyses. Statistical analyses included ANOVA, non-parametric Friedman, t-student and Chi-square tests, using SPSS 22 software. Results The mean scores of the 38 participants at the beginning of the study were: FSQ (severity of FM, 0–31) – 22 ± 4.4; RFIQ (0–100) – 65 ± 17; IBS-SSS (0–500) – 275 ± 101; and EQ-5D (0–100) – 48 ± 19. Mean adherence to dietary regimens was 86%, confirmed by significant difference in FODMAP intakes (25 g/day vs. 2.5 g/day; p < 0.01). Comparisons between the three moments of assessment showed significant (p < 0.01) declines in scores in VAS, FSQ, and RFIQ scores, in all domains measured. An important improvement was observed with a reduction in the severity of GI symptoms, with 50% reduction in IBS scores to 138 ± 117, following LFD therapy. A significant correlation (r = 0.36; p < 0.05) was found between improvements in FM impact (declined scores) and gastrointestinal scores. There was also a significant correlation (r = 0.65; p < 0.01) between “satisfaction with improvement” after introduction of LFDs and “diet adherence”, with satisfaction of the diet achieving 77% among participants. A significant difference was observed between patients who improved as compared to those that did not improve (Chi-square χ2 = 6.16; p < .05), showing that the probability of improvement, depends on the severity of the RFIQ score. Conclusions Implementation of diet therapy involving FODMAP restrictions, in this cohort of FM patients, resulted in a significant reduction in GI disorders and FM symptoms, including pain scores. These results need to be extended in future larger studies on dietary therapy for treatment of FM. Implications According to current scientific knowledge, these are the first relevant results found in an intervention with LFD therapy in FM and must be reproduced looking for a future dietetic approach in FM.
Resumo:
Cure kinetics for the formation of copolyurethane networks of various compositions based on hydroxy-terminated polybutadiene(HTPB), poly(12-hydroxy stearic acid-co-TMP) ester polyol(PEP), and different isocyanates has been studied through viscosity build up during the cure reaction. The viscosity (N)-time (t) plots conform to the equation N = ae(bt), where a and b are empirical constants, dependent on the composition and the nature of the polyols and the isocyanates. The rate constants (b) for viscosity build up, evaluated from the slopes of dN/dt versus N plots at different temperatures, were found to vary significantly from 0.0073 to 0.25 min(-1); and the activation energies for gelation were found to be in the range 20 to 40 kJ mol(-1). The results have been interpreted in terms of the dependence of the rate constants on structural characteristics of the prepolymers. (C) 1997 John Wiley & Sons, Inc.
Resumo:
This brief account highlights the notable findings of our investigation into the supramolecular chemistry of conformationally locked polycyclitols in the solid state. The study was aimed at analyzing the crystal packing and unraveling the modalities of non-covalent interactions (particularly, intramolecular vis-a-vis intermolecular OH center dot center dot center dot O hydrogen bonds) in polyols. The know-how obtained thereof, was successfully utilized to engineer self-assemblies of designer polycyclitols, having hydrogen bond donors and acceptors fettered onto a trans-decalin scaffold. The results seek to draw particular attention to the intrinsic attribute of this rigid carbocyclic framework to lock functional groups into spatially invariant positions and bring potential intramolecular hydrogen bonding partners into favorable interaction geometry to engender predictability in the self-assembly patterns.
Resumo:
Considerações ambientais têm aumentado a pesquisa e o desenvolvimento de sistemas poliméricos aquosos para diversos tipos de aplicações, principalmente como revestimentos. Nesta dissertação, foram sintetizadas formulações não-poluentes à base de poliuretanos dispersos em água (PUDs), com 40% de teor de sólidos, na ausência de solventes orgânicos. Os monômeros empregados foram copolímeros em bloco à base de poli(glicol etilênico) e poli(glicol propilênico) (EG-b-PG), com teor de 25% de segmento hidrofílico EG, poli (glicol propilênico) (PPG), ácido dimetilolpropiônico (DMPA), diisocianato de isoforona (IPDI) e hidrazina (HYD), como extensor de cadeia. Foram variadas as razões entre o número de equivalente-grama de grupamentos isocianato e hidroxila (NCO/OH) e a proporção em equivalente-grama de PPG e dos copolímeros em bloco (EG-b-PG). Foi observado que a incorporação de altas quantidades de copolímero dificultou a síntese dos poliuretanos dispersos em água, levando à formação de géis. O tamanho médio de partícula e a viscosidade das dispersões foram determinados. Os filmes vazados a partir dessas dispersões foram avaliados quanto à capacidade de absorção de água, resistência mecânica, termogravimetria (TG), e caracterizados por espectroscopia na região do infravermelho (FTIR). As dispersões poliuretânicas produzidas se mostraram satisfatórias quando aplicadas como revestimento para madeira, metais e vidro
Resumo:
Uniform Fe3O4 octahedral microcrystals with perfect appearance have been successfully synthesized by a Triton X100-assisted polyol process. During the polyols process for the preparation of Fe3O4 octahedra. the introduction of Triton X100 decreases significantly the needed concentration of NaOH. The results show that Fe3O4 octahedra are composed of eight triangular sheets, which are equilateral triangles. The edge size of Fe3O4 octahedron is about 4 mu m. The magnetic properties of Fe3O4 octahedral particles were evaluated on a SQUID magnetometer at room temperature.
Resumo:
The four AB(2) monomers, N-[3- or 4-bis(4-hydroxyphenyl)toluoyl]-4-chlorophthalimide and N-{3- or 4-[1,1-bis(4-hydroxyphenyl)]ethylphenyl}-4-chlorophthalimides, were prepared and used for synthesis of hyperbranched poly(ether imide)s bearing hydroxyl end groups. These hyperbranched poly(ether imide)s had moderate molecular weights with broad distributions and showed glass-transition temperatures (Tgs) between 177 and 230 degreesC. The thermogravimetric analytic measurement revealed the decomposition temperature at 5% weight-loss temperatures (T-d(5%)) ranging from 240 to 281 degreesC. Analysis using H-1 NMR spectroscopy revealed the four types of hyperbranched poly(ether imide)s to have similar degrees of branching (ca. 60%). These polymers were modified by acylation or nucleophilic substitution reaction at the hydroxyl end groups. The conversion effectiveness depended on the type of modification reaction, modifier, and reaction conditions. The thermal stability and solubility of hyperbranched poly(ether imide)s were improved by the modification of the end groups.
Resumo:
During alcoholic fermentation, the products build up and can, ultimately, kill the organism due to their effects on the cell's macromolecular systems. The effects of alcohols on the steady-state kinetic parameters of the model enzyme ß-galactosidase were studied. At modest concentrations (0 to 2 M), there was little effect of methanol, ethanol, propanol and butanol on the kinetic constants. However, above these concentrations, each alcohol caused the maximal rate, V (max), to fall and the Michaelis constant, K (m), to rise. Except in the case of methanol, the chaotropicity of the solute, rather than its precise chemical structure, determined and can, therefore, be used to predict inhibitory activity. Compounds which act as compatible solutes (e.g. glycerol and other polyols) generally reduced enzyme activity in the absence of alcohols at the concentration tested (191 mM). In the case of the ethanol- or propanol-inhibited ß-galactosidase, the addition of compatible solutes was unable to restore the enzyme's kinetic parameters to their uninhibited levels; addition of chaotropic solutes such as urea tended to enhance the effects of these alcohols. It is possible that the compatible solutes caused excessive rigidification of the enzyme's structure, whereas the alcohols disrupt the tertiary and quaternary structure of the protein. From the point of view of protecting enzyme activity, it may be unwise to add compatible solutes in the early stages of industrial fermentations; however, there may be benefits as the alcohol concentration increases.
Resumo:
The growth and conidial physiology of the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus were studied under different conditions. The effects of culture age (up to 120 days), temperature (5 to 35°C), and pH (2.9 to 11.1) were determined. Growth was optimal at pH 5 to 8 for each isolate and between 20 and 35°C, depending on the isolate. The predominant polyol in conidia was mannitol, with up to 39, 134, and 61 mg g of conidia-1 for B. bassiana, M. anisopliae, and P. farinosus, respectively. Conidia of M. anisopliae contained relatively small amounts of lower-molecular-weight polyols and trehalose (less than 25 mg g-1 in total) in all treatments. Conidia of B. bassiana and P. farinosus contained up to 30, 32, and 25 mg of glycerol, erythritol, and trehalose, respectively, g-1, depending on the treatment. Conidia of P. farinosus contained unusually high amounts of glycerol and erythritol at pH 2.9. The apparent effect of pH on gene expression is discussed in relation to the induction of a water stress response. To our knowledge, this is the first report of polyols and trehalose in fungal propagules produced over a range of temperature or pH. Some conditions and harvesting times were associated with an apparent inhibition of synthesis or accumulation of polyols and trehalose. This shows that culture age and environmental conditions affect the physiological quality of inoculum and can thereby determine its potential for biocontrol.