926 resultados para Polymorphic microsatellites
Resumo:
A total of five polymorphic microsatellites loci from Pseudoplatystoma corruscans were isolated and characterized. A population survey involving 43 specimens resolved a large number of alleles (range seven to eight among loci) and high observed heterozygosity (0.500-0.615), indicating its usefulness in population genetics studies. Cross-species amplification was successful in four other Pimelodidae species.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To probe genetic variation in the regulation of sexual dimorphism, we have characterized the mouse protein Slp, coded by the gene sex-limited protein (Slp). Slp expression in many strains is limited to males and is androgen-dependent. However, female expression is also observed in rare strains, due to nonlinked gene(s) termed regulator of sex-limitation (rsl). In this report we demonstrate that female expression of Slp results from homozygous recessive allele(s) at a single autosomal locus that maps to a 2.2-centimorgan interval on chromosome 13. This conclusion was supported by extensive genetic analyses including the use of polymorphic microsatellites to type numerous backcross progeny and a recombinant inbred series and to identify the congenic interval in three independently derived congenic strains. Four attractive candidate genes were identified by the localization of rsl. Interestingly, rsl was found not only to enable expression in females but to also increase expression in males. The findings suggest that the expression of Slp and perhaps other sexually dimorphic proteins is regulated by two pathways, one that is dependent upon rsl but not androgens and another that is rsl-independent but requires androgens.
Resumo:
Despite being the model organism for plant molecular genetic studies, little is known about the origins and evolutionary history of extant natural populations of Arabidopsis thaliana. We have analysed phylogenetic relationships between worldwide populations of Arabidopsis using polymorphic chloroplast microsatellites. These highly variable markers have revealed previously undetected levels of cytoplasmic variation and confirm previous hypotheses of a recent and rapid expansion of the species from its centre of origin. Furthermore, the results seem to verify previous nuclear analyses that call into question the true origin of several individual Arabidopsis ecotypes.
Resumo:
Skipjack tuna (katsuwonus pelamis) (SJT) is the largest tuna fishery in all the major oceans around the world, and the largest marine fishery in Sri Lanka. Knowledge of genetic population structure and effective population size of SJT in the Indian Ocean and other major oceans, however, is still lacking for better management practices and conservation strategies. We developed microsatellite genetic markers using SJT around Sri Lanka in the Indian Ocean, and characterise one tri- and seven tetra-nucleotide microsatellite loci isolated from enriched genomic libraries from SJT, to provide tools for addressing both conservation and fisheries management questions. An analysis of these eight microsatellite markers in two populations of SJT from eastern Sri Lanka (n = 44) and the Maldives Islands (n = 53) showed that all eight microsatellites were polymorphic with an average number of alleles per locus of 11.80 (range 5-27). Expected heterozygosities at marker loci ranged from 0.450 to 0.961. These markers are being used currently to characterise population structure and extent of natural gene flow in SJT populations from the eastern and western Indian Ocean. No significant linkage disequilibrium was detected among any loci pairs.
Resumo:
The tropical abalone Haliotis asinina is a wild-caught and cultured species throughout the Indo-Pacific as well as being an emerging model species for the study of haliotids. H. asinina has the fastest recorded natural growth rate of any abalone and reaches sexual maturity within one year. As such, it is a suitable abalone species for selective breeding for commercially important traits such as rapid growth. Estimating the amount of variation in size that is attributable to heritable genetic differences can assist the development of such a selective breeding program. Here we estimated heritability for growth-related traits at 12 months of age by creating a single cohort of 84 families in a full-factorial mating design consisting of 14 sires and 6 dams. Of 500 progeny sampled, 465 were successfully assigned to their parents based on shared alleles at 5 polymorphic microsatellite loci. Using an animal model, heritability estimates were 0.48 ± 0.15 for shell length, 0.38 ± 0.13 for shell width and 0.36 ± 0.13 for weight. Genetic correlations were > 0.98 between shell parameters and weight, indicating that breeding for weight gains could be successfully achieved by selecting for shell length.
Resumo:
We report here development and characterization of 48 novel microsatellite markers for Ropalidia marginata, a tropical, primitively eusocial polistine wasp from peninsular India. Thirty-two microsatellites showed polymorphism in a wild population of R. marginata (N = 38) collected from Bangalore, India. These markers will facilitate answering some interesting questions in ecology and evolutionary biology of this wasp, such as population structure, serial polygyny, intra-colony genetic relatedness and the pattern of queen succession.
Resumo:
Fifteen polymorphic microsatellite loci were developed for the Chinese soft-shelled turtle (Pelodiscus sinensis) from the (GT)(n) microsatellite-enriched genomic library, using the fast isolation by amplified fragment length polymorphism of sequences containing repeats protocol. The polymorphism of all 15 loci ranged from two to seven alleles with observed heterozygosities ranging from 0.03 to 0.98 (mean 0.43) in one population of 40 individuals. These novel loci will be helpful for understanding the population structure at genetic level and marker-assisted breeding of this vulnerable species.
Resumo:
Wuchang bream (Megalobrama amblycephala) is an economically important fish in China. From a (GT)(13)-enriched genomic library, 20 microsatellites were developed. Nine of these 20 loci were polymorphic in a test population with allele numbers ranging from two to four, and the observed and expected heterozygosities ranging from 0.2609 to 0.7826 and from 0.3739 to 0.7546, respectively. In the cross-species amplifications, six of these nine loci were also polymorphic in white amur bream (Parabramis pekinensis). These polymorphic microsatellite loci are potentially useful for population genetics of Wuchang bream and its closely related species.
Resumo:
Eighteen microsatellite markers were isolated and characterized using an enrichment protocol in the Chinese mandarin fish Siniperca chuatsi (Basilewsky), a commercially important piscivorous fish in China. Out of 48 pairs of primers designed, 18 loci exhibited polymorphism with three to six alleles (mean 4.4 alleles/locus) and average observed heterozygosity ranged from 0.633 to 0.833 (mean 0.748) in a test population from Dongting Lake of China. Except for two loci, all other 16 loci were in the Hardy-Weinberg equilibrium. These markers would be useful for such studies as population genetics, ecology and selective breeding of the Chinese mandarin fish in future.
Resumo:
From (GATA)(n) and (AAAG)(n) enriched genomic libraries for the Chinese sturgeon (Acipenser sinensis), 50 primer pairs were developed using the fast isolation by AFLP of sequences containing repeats (FIASCO) protocol. Forty-six primer pairs exhibited highly polymorphic with two to 11 alleles per locus, while the rest four displayed monomorphic. These markers yielded 246 alleles in a survey of eight specimens of wild A. sinensis. Average observed heterozygosity ranged from 0.13 to 1.00. These loci should provide sufficient levels of genetic diversity to allow parentage analysis for artificial stocking management and delineation of fine-scale population structure.
Resumo:
The Yangtze finless porpoise, Neophocaena phocaenoides asiaeorientalis, is all endangered small cetacean that occurs only in the middle and lower reaches of the Yangtze River of China. The establishment of a breeding population of the porpoise in Tian-e-Zhou Baiji National Natural Reserve represents the first attempt at ex situ conservation efforts for a cetacean species. With the goal of effective protection, management, and monitoring of this preserved population, we examined its genetic diversity using 930 bp of mtDNA control region sequences and 13 polymorphic microsatellite loci. A very low level of genetic variation (h = 0.6010 +/- 0.0029 s.d.; pi = 0.0007 +/- 0.0000002 s.d.) in the mtDNA control region sequences and a moderate genetic diversity (Ho = 0.5740 +/- 0.2575 s.d.) in the microsatellites were detected in the population. It is necessary to introduce more individuals with representative genetic variations into the reserve ill order to foml a larger and healthier group structure for long-term survival of the population. Successful establishment of the Yangtze finless porpoise population in the Reserve also provides a useful model for an ex situ conservation programme for other rare and endangered species. (c) 2005 International Council for the Exploration ofthe Sea. Published by Elsevier Ltd. All rights reserved.
Resumo:
Four microsatellites were used to examine the genetic variability of the spawning stocks of Chinese sturgeon, Acipenser sinensis, from the Yangtze River sampled over a 3-year period (1999-2001). Within 60 individuals, a total of 28 alleles were detected over four polymorphic microsatellite loci. The number of alleles per locus ranged from 4 to 15, with an average allele number of 7. The number of genotypes per locus ranged from 6 to 41. The genetic diversity of four microsatellite loci varied from 0.34 to 0.67, with an average value of 0.54. For the four microsatellite loci, the deviation from the Hardy-Weinberg equilibrium was mainly due to null alleles. The mean number of alleles per locus and the mean heterozygosity were lower than the average values known for anadromous fishes. Fish were clustered according to their microsatellite characteristics using an unsupervised 'Artificial Neural Networks' method entitled 'Self-organizing Map'. The results revealed no significant genetic differentiation considering genetic distance among samples collected during different years. Lack of heterogeneity among different annual groups of spawning stocks was explained by the complex age structure (from 8 to 27 years for males and 12 to 35 years for females) of Chinese sturgeon, leading to formulate an hypothesis about the maintenance of genetic diversity and stability in long-lived animals.