66 resultados para Polyfluorene


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light-emitting diodes exhibiting efficient pure-white-light electroluminescence have been successfully developed by using a single polymer: polyfluorene derivatives with 1,8-naphthalimide chromophores chemically doped onto the polyfluorene backbones. By adjusting the emission wavelength of the 1,8-naphthalimide components and optimizing the relative content of 1,8-naphthalimide derivatives in the resulting polymers, white-light electroluminescence from a single polymer, as opposed to a polymer blend, has been obtained in a device with a configuration of indium tin oxide/poly(3,4-ethyleiledioxythiophene)(50 nm)/polymer(80 nm)/Ca(10 nm)/Al(100 nm). The device exhibits Commission Internationale de I'Eclairage coordinates of (0.32,0.36), a maximum brightness of 11900 cd m(-2), a current efficiency of 3.8 cd A(-1), a power efficiency of 2.0 lm W-1. an external quantum efficiency of 1.50 %, and quite stable color coordinates at different driving voltages, even at high luminances of over 5000 cd m(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dopant/host concept, which is an efficient approach to enhance the electroluminescence (EL) efficiency and stability for organic light-emitting diodes (OLEDs) devices, has been applied to design efficient and stable blue light-emitting polymers. By covalently attaching 0.2 mol % highly fluorescent 4-dimethylamino-1,8-naphthalimide (DMAN) unit (photoluminescence quantum efficiency: Phi(PL)=0.84) to the pendant chain of polyfluorene, an efficient and colorfast blue light-emitting polymer with a dopant/host system and a molecular dispersion feature was developed. The single-layer device (indium tin oxide/PEDOT/polymer/Ca/Al) exhibited the maximum luminance efficiency of 6.85 cd/A and maximum power efficiency of 5.38 lm/W with the CIE coordinates of (0.15, 0.19). Moreover, no undesired long-wavelength green emission was observed in the EL spectra when the device was thermal annealed in air at 180 degrees C for 1 h before cathode deposition. These significant improvements in both efficiency and color stability are due to the charge trapping and energy transfer from polyfluorene host to highly fluorescent DMAN dopant in the molecular level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dopant/host methodology, which enables efficient tuning of emission color and enhancement of the electroluminescence (EL) efficiency of organic light emitting diodes (OLEDs) based on small molecules, is applied to the design and synthesis of highly efficient green light emitting polymers. Highly efficient green light emitting polymers were obtained by covalently attaching just 0.3-1.0 mol% of a green dopant, 4-(N,N-diphenyl) amino-1,8-naphthaliniide (DPAN), to the pendant chain of polyfluorene (the host). The polymers emit green light and exhibit a high photoluminescence (PL) quantum yield of Lip to 0.96 in solid films, which is attributed to the energy transfer from the polyfluorene host to the DPAN dopant unit. Single layer devices (device configuration: ITO/PEDOT/Polymer/Ca/Al) of the polymers exhibit a turn on voltage of 4.8 V, luminance efficiency of 7.43 cd A(-1), power efficiency of 2.96 lm W-1 and CIE coordinates at (0.26, 0.58). The good device performance can be attributed to the energy transfer and charge trapping from the polyfluorene host to the DPAN dopant unit as well as the molecular dispersion of the dopant in the host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of photoluminescent conjugated polymer silica ionogels using sol–gel chemistry is described. Cooperative self-assembly of an ionic liquid, the silica precursor and poly(9,9-dioctylfluorene) (PFO) via hydrogen bonding and p-stacking interactions drives formation of the PFO ß-phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the photophysical properties of single-walled carbon nanotube (SWNT) suspensions In toluene solutions of poly[9,9-dioctylfluorenyl-2,7-diyl](PFO). Steady-state and time-resolved photoluminescence spectroscopy in the near-infrared and visible spectral regions are used to study the interaction of the dispersed SWNTs with the wrapped polymer. Molecular dynamics simulations of the PFO-SWNT hybrids in toluene were carried out to evaluate the energetics of different wrapping geometries. The simulated fluorescence spectra in the visible region were obtained by the quantum chemical ZINDO-CI method, using a sampling of structures obtained from the dynamics trajectories. The tested schemes consider polymer chains aligned along the nanotube axis, where chirality has a minimal effect, or forming helical structures, where a preference for high chiral angles is evidenced. Moreover, toluene affects the polymer structure favoring the helical conformation. Simulations show that the most stable hybrid system is the PFO-wrapped (8,6) nanotube, in agreement with the experimentally observed selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the microstructure and dynamics in the solid state of polyfluorene-based polymers, poly(9,)-dioctylfluorenyl-2,7-diyl) (PFO), a semicrystalline polymer, and poly [(9,9-dioctyl- 2,7-divinylene-fluorenylene)-alt-co-{2-methoxy-5-(2-ethyl-hexyloxy)- 1,4-phenylene vinylene}, a copolymer with mesomorphic phase properties. These Structures were determined by wide-angle X-ray scattering (WAXS) measurements, Assuming a packing model for the copolymer structure, where the planes of the phenyl rings are stacked and separated by an average distance of similar to 4.5 angstrom and laterally spaced by about similar to 16 angstrom, we followed the evolution of these distances as a function of temperature using WAXS and associated the changes observed to the polymer relaxation processes identified by dynamical mechanical thermal analysis. Specific molecular motions were studied by solid-state nuclear magnetic resonance. The onset of the side-chain motion at about 213 K (beta-relaxation) produced a small increase in the lateral spacing and in the stacking distance of the phenyl rings in them aggregated Structures, Besides, at about 383 K (alpha-relaxation) there occurs a significant increase in the amplitude of the torsion motion in the backbone, producing a greater increase in the stacking distance of the phenyl rings. Similar results were observed in the semicrystalline phase of PFO, but in this case the presence of the crystalline structure affects considerably the overall dynamics, which tends to be more hindered. Put together, Our data explain many features of the temperature dependence of the photoluminescence of these two polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polyfluorene derivative of the PPV, poly(9,9`-n-dihexyl-2,7-fluorenedilvinylene-alt-1,4-phenylenevinylene), with a strong tendency to aggregation was blended with several members of a series composed by poly(alkyl methacrylate)s with the following substituents in the ester position: methyl, ethyl, isopropyl, isobutyl, n-butyl, and cyclohexyl. The de-aggregation effect in blends was studied by steady-state photoluminescence spectroscopy using several blend compositions. The efficiency of each dispersing phase was discussed in terms of the polymer miscibility, controlled by interaction parameters between the polyfluorene and every poly(alkyl methacrylate)s, here described using Hilde-brand solubility parameters. (c) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excited-state dynamics of two polyfluorene copolymers, one fully conjugated containing phenylene vinylene units alternated with 9,9`-dihexylfluorenyl groups and the other segmented by -(CH2)(8)- spacer, were studied in dilute solution of different solvents using a picosecond single-photon timing technique. The excited-state dynamics of the segmented copolymer follows the Forster resonant energy-transfer model which describes intrachain energy-transfer kinetics among random oriented chromophores. Energy transfer is confirmed by analysis of fluorescence anisotropy relaxation with the measurement of a short decay component of about 60 ps. The fluorescence decay surface of the fully conjugated copolymer is biexponential with decay times of about 470 and 900 ps, ascribed to deactivation of chain moieties containing trans and cis isomers already in a photostationary condition. Thus, energy transfer is very fast due to the conjugated nature and rigid-rod-like structure of this copolymer chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyfluorene end-capped with N-(2-benzothiazole)-1 8-naphthalimide (PF-BNI) is a highly fluorescent material with fluorescence emission modulated by solvent polarity Its low energy excited state is assigned as a mixed configuration state between the singlet S(1) of the fluorene backbone (F) with the charge transfer (CI) of the end group BNI The triexponential fluorescence decays of PF-BNI were associated with fast energy migration to form an intrachain charge-transfer (ICCT) state polyfluorene backbone decay and ICCT deactivation Time-resolved fluorescence anisotropy exhibited biexponential relaxation with a fast component of 12-16 ps in addition to a slow one in the range 0 8-1 4 ns depending on the solvent showing that depolarization occurs from two different processes energy migration to form the ICCT state and slow rotational diffusion motion of end segments at a longer time Results from femtosecond transient absorption measurements agreed with anisotropy decay and showed a decay component of about 16 ps at 605 nm in PF BNI ascribed to the conversion of S(1) to the ICCT excited state From the ratio of asymptotic and initial amplitudes of the transient absorption measurement the efficiency of intrachain ICCT formation is estimated in 0 5 which means that on average, half of the excited state formed in a BNI-(F)(n)-BNI chain with n = 32 is converted to its low energy intrachain charge-transfer (ICCT) state

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyfluorenes are promising materials for the emitting layer of polymer light emitting devices (PLEDs) with blue emission. In this work, we report on PLEDs fabricated with Langmuir-Blodgett (LB) films of a polyfluorene derivative, namely poly(9,9-di-hexylfluorenediyl vinylene-alt-1,4-phenylenevinylene) (PDHF-PV). Y-type LB films were transferred onto ITO substrates at a surface pressure of 35 mN m-1 and with dipping speed of 3 mm min -1. A thin aluminum layer was evaporated on top of the LB film, thus yielding a sandwich structure (ITO/PDHF-PV(LB)/Al). Current-voltage (I vs V) measurements indicate that the device displays a classical behavior of a rectifying diode. The threshold value is approximately 5 V, and the onset for visible light emission occurs at ca. 10 V. From the a.c. electrical responses we infer that the active layer has a typical behavior of PLEDs where the real component of ac conductivity obeys a power-law with the frequency. Cole-Cole plots (Im(Z) vs. Re(Z)) for the device exhibit a series of semicircles, the diameter of which decreases with increasing forward bias. This PLED structure is modeled by a parallel resistance and capacitance combination, representing the dominant mechanisms of charge transport and polarization in the organic layer, in series with a resistance representing the ITO contact. Overall, the results presented here demonstrate the feasibility of LEDs made with LB films of PDHF-PV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorene-based polymers are widely known materials due to a combination of features such as photoluminescence and electroluminescence, oxidative stability, and film-forming ability. However, studies reporting nonlinear optical properties in this class of conjugated polymer are scarce. Here, we report a new class of polyfluorene derivatives poly(9,9'-n-dihexyl-2,7-fluorenedilvinylene-alt-1,4-phenylenevinylene), poly(9,9'-n-dihexyl-2,7-fluorenedilvinylene-alt-2,5-thiophene), and poly[(9,9-di-hexylfluorenediylvinylene-alt-1,4-phenylenevinylene)-co-((9,9'-(3-t-butylpropanoate) fluorene-1,4-phenylene)] displaying high two-photon absorption (2PA) in the spectral range from a 490 to 1100 nm. The 2PA cross-section peak values for these materials are as high as 3000 Goppert Mayer (1 GM = 1 x 10-50 cm4 s/photon), which is related to the high degree of conjugation along the polymer backbone. The polymers that were used in this study presented a strong two-photon luminescence and also displayed optical limiting behavior, which, in combination with their well-established properties, make them highly suitable for nonlinear optical devices. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 148153, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The comprehensive control of morphology and structure is of extreme importance in semiconducting polymers when used as active layers in optoelectronic devices. In the work reported here, a systematic investigation of the structural and dynamical properties of poly(9,9-di-n-octyl-fluorene-alt-benzothiadiazole), known as F8BT, and their correlation with electrical properties is presented when the material is used as an active layer in optoelectronic devices. By means of X-ray diffraction, one observes that in thick layer films (thickness of about 4 μm) grown by drop-cast deposition, a solvent induced crystalline phase exists which evolves to a stable phase as the temperature is raised. This was not observed in thin films (thickness of about 250 nm) prepared by spin-coating within the investigated temperature range. By modeling the current-voltages characteristics of both thick and thin film devices, important information on the influence of crystallization on the trapping states could be drawn. Furthermore, the temperature dependence of the charge carrier mobility was found to be closely related to that of the molecular relaxation processes. The understanding of the nature of such molecular relaxations, measured by solid-state nuclear magnetic resonance methods, allows one to understand the importance of molecular relaxations and microstructure changes on the trap states of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Absorption induced by electrochemically injected holes is studied in poly-9,9-dioctylfluorene (PFO) films. Injected charges form positive polarons which are delocalised over four fluorene units in the glassy phase and about seven fluorene units in its β-phase. Polaron absorption cross-sections at the 640 nm peak are similar to the published values of chemically reduced oligofluorenes in solution. The absorption cross-section of polaron in the β-phase at 470 nm is about eight times smaller than the stimulated emission cross-section derived from published data. This indicates that β-phase-rich PFO is an attractive candidate for a light-emitting layer in double-heterostructure organic laser diodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent times, blended polymers have shown a lot of promise in terms of easy processability in different shapes and forms. In the present work, polyaniline emeraldine base (PANi-EB) was doped with camphor sulfonic acid (CSA) and combined with the conducting polymer polyfluorene (PF) as well as the insulating polymer polyvinyl chloride (PVC) to synthesize CSA doped PANi-PF and PANi-PVC blended polymers. It is well known that PANi when doped with CSA becomes highly conducting. However, its poor mechanical properties, such as low tensile, compressive, and flexural strength render PANi a non-ideal material to be processed for its various practical applications, such as electromagnetic shielding, anti-corrosion shielding, photolithography and microelectronic devices etc. Thus the search for polymers which are easily processable and are capable of showing high conductivity still continues. PANi-PVC blend was prepared, which showed low conductivity which is limiting factor for certain applications. Therefore, another processable polymer PF was chosen as conducting matrix. Conducting PF can be easily processed into various shapes and forms. Therefore, a blend mixture was prepared by using PANi and PF through the use of CSA as a counter ion which forms a "bridge" between the two polymeric components of the inter-polymer complex. Two blended polymers have been synthesized and investigated for their conductivity behaviour. It was observed that the blended film of CSA doped PANi-PVC showed a room temperature electrical conductivity of 2.8 × 10-7 S/cm where as the blended film made by CSA doped PANi with conducting polymer PF showed a room temperature conductivity of 1.3 × 10-5 S/cm. Blended films were irradiated with 100 MeV silicon ions with a view to increase their conductivity with a fluence ranging from 1011 ions to 1013 per cm2 from 15 UD Pelletron accelerator at NSC, New Delhi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The blue emission of polyfluorene (PF)-based light-emitting diodes (LEDs) is known to degrade due to a low-energy green emission, which hitherto has been attributed to oxidative defects. By studying the electroluminescence (EL) from ethyl-hexyl substituted PF LEDs in the presence of oxygen and in an inert atmosphere, and by using trace quantities of paramagnetic impurities (PM) in the polymer, we show that the triplet states play a major role in the low-energy emission mechanism. Our time-dependent many-body studies show a large cross-section for the triplet formation in the EL process in the presence of PM, primarily due to electron-hole recombination processes.