137 resultados para Polydispersity
Resumo:
Polymeric nanoparticles (PNPs) have attracted considerable interest over the last few years due to their unique properties and behaviors provided by their small size. Such materials could be used in a wide range of applications such as diagnostics and drug delivery. Advantages of PNPs include controlled release, protection of drug molecules and its specific targeting, with concomitant increasing of the therapeutic index. In this work, novel sucrose and cholic acid based PNPs were prepared from different polymers, namely polyethylene glycol (PEG), poly(D,L-lactic-co-glycolic acid) (PLGA) and PLGA-co-PEG copolymer. In these PNP carriers, cholic acid will act as a drug incorporation site and the carbohydrate as targeting moiety. The uptake of nanoparticles into cells usually involves endocytotic processes, which depend primarily on their size and surface characteristics. These properties can be tuned by the nanoparticle preparation method. Therefore, the nanoprecipitation and the emulsion-solvent evaporation method were applied to prepare the PNPs. The influence of various parameters, such as concentration of the starting solution, evaporation method and solvent properties on the nanoparticle size, size distribution and morphology were studied. The PNPs were characterized by using atomic force microscopy (AFM), scanning electron microscopy (SEM) and dynamic light scattering (DLS) to assess their size distribution and morphology. The PNPs obtained by nanoprecipitation ranged in size between 90 nm and 130 nm with a very low polydispersity index (PDI < 0.3). On the other hand, the PNPs produced by the emulsion-solvent evaporation method revealed particle sizes around 300 nm with a high PDI value. More detailed information was found in AFM and SEM images, which demonstrated that all these PNPs were regularly spherical. ζ-potential measurements were satisfactory and evidenced the importance of sucrose moiety on the polymeric system, which was responsible for the obtained negative surface charge, providing colloidal stability. The results of this study show that sucrose and cholic acid based polymeric conjugates can be successfully used to prepare PNPs with tunable physicochemical characteristics. In addition, it provides novel information about the materials used and the methods applied. It is hoped that this work will be useful for the development of novel carbohydrate based nanoparticles for biomedical applications, specifically for targeted drug delivery.
Resumo:
Bovine α-lactalbumin (α-La) and lysozyme (Lys), two globular proteins with highly homologous tertiary structures and opposite isoelectric points, were used to produce bio-based supramolecular structures under various pH values (3, 7 and 11), temperatures (25, 50 and 75 °C) and times (15, 25 and 35 min) of heating. Isothermal titration calorimetry experiments showed protein interactions and demonstrated that structures were obtained from the mixture of α-La/Lys in molar ratio of 0.546. Structures were characterized in terms of morphology by transmission electron microscopy (TEM) and dynamic light scattering (DLS), conformational structure by circular dichroism and intrinsic fluorescence spectroscopy and stability by DLS. Results have shown that protein conformational structure and intermolecular interactions are controlled by the physicochemical conditions applied. The increase of heating temperature led to a significant decrease in size and polydispersity (PDI) of α-La–Lys supramolecular structures, while the increase of heating time, particularly at temperatures above 50 °C, promoted a significant increase in size and PDI. At pH 7 supramolecular structures were obtained at microscale – confirmed by optical microscopy – displaying also a high PDI (i.e. > 0.4). The minimum size and PDI (61 ± 2.3 nm and 0.14 ± 0.03, respectively) were produced at pH 11 for a heating treatment of 75 °C for 15 min, thus suggesting that these conditions could be considered as critical for supramolecular structure formation. Its size and morphology were confirmed by TEM showing a well-defined spherical form. Structures at these conditions showed to be stable at least for 30 or 90 days, when stored at 25 or 4 °C, respectively. Hence, α-La–Lys supramolecular structures showed properties that indicate that they are a promising delivery system for food and pharmaceutical applications.
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica.
Resumo:
Tese de Doutoramento em Biologia das Plantas - MAP BIOPLANT
Resumo:
B-Lactoglobulin (b-Lg) is the major protein fraction of bovine whey serum and a primary gelling agent. b-Lg has a high nutritional value, is stable at low pH being highly resistant to proteolytic degradation in the stomach, besides, it has the ability of acting as an encapsulating agent. This study aims at assessing the ability of b-Lg nanostructures to associate a nutraceutical - i.e. riboflavin - and release it in a controlled manner throughout an in vitro gastrointestinal (GI) system. For this reason b-Lg nanostructures loaded with riboflavin were critically characterized in terms of their morphology (i.e. size, polydispersity, -potential and shape) by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and efficiency to associate to riboflavin through spectrofluorimetry. Furthermore, these nanocomplexes were evaluated in an in vitro GI model, simulating the physiological conditions. Stable b-Lg nanostructures were obtained at pH 6, of spherical shape, characterized by particle size of 172±1 nm, low polydispersity (i.e. PDI of 0.06±0.02), -potential of -32±3 mV and association efficiency (AE) of 26±1 %. b-Lg nanostructures showed to be stable upon their passage throughout stomach (i.e. particle size, PDI and potential of 248±10 nm, 0.18±0.03 and 18±3 mV, respectively). Concerning their passage throughout the intestine, such nanostructures were mostly degraded in the duodenum. Regarding riboflavin, a release of about 11 % was observed after their passage through stomach, while 35 %, 38 % and 5 % were the released percentages of the total riboflavin associated observed after passage through duodenum, jejunum and ileum, respectively. Hence,b-Lg nanostructures showed to be suitable carriers for riboflavin until the intestine, where their degradation occurs. b-Lg also showed to be structurally stable, under food simulant conditions (yoghurt simulant, composed of 3 % acetic acid), over 14 days, with a protective effect upon riboflavin activity, releasing it in a 7 day period.
Resumo:
Curcumin and caffeine (used as lipophilic and hydrophilic model compounds, respectively) were successfully encapsulated in lactoferrin-glycomacropeptide (Lf-GMP) nanohydrogels by thermal gelation showing high encapsulation efficiencies (>90 %). FTIR spectroscopy confirmed the encapsulation of bioactive compounds in Lf-GMP nanohydrogels and revealed that according to the encapsulated compound different interactions occur with the nanohydrogel matrix. The successful encapsulation of bioactive compounds in Lf-GMP nanohydrogels was also confirmed by fluorescence measurements and confocal laser scanning microscopy. TEM images showed that loaded nanohydrogels maintain their spherical shape with sizes of 112 and 126 nm for curcumin and caffeine encapsulated in Lf-GMP nanohydrogels, respectively; in both cases a polydispersity of 0.2 was obtained. The release mechanisms of bioactive compounds through Lf-GMP nanohydrogels were evaluated at pH 2 and pH 7, by fitting the Linear Superimposition Model to the experimental data. The bioactive compounds release was found to be pH-dependent: at pH 2, relaxation is the governing phenomenon for curcumin and caffeine compounds and at pH 7 Ficks diffusion is the main mechanism of caffeine release while curcumin was not released through Lf-GMP nanohydrogels.
Resumo:
Dissertação de mestrado em Biofísica e Bionanossistemas
Resumo:
Lipid nanoballoons integrating multiple emulsions of the type water-in-oil-in-water enclose, at least in theory, a biomimetic aqueous-core suitable for housing hydrophilic biomolecules such as proteins, peptides and bacteriophage particles. The research effort entertained in this paper reports a full statistical 23x31 factorial design study (three variables at two levels and one variable at three levels) to optimize biomimetic aqueous-core lipid nanoballoons for housing hydrophilic protein entities. The concentrations of protein, lipophilic and hydrophilic emulsifiers, and homogenization speed were set as the four independent variables, whereas the mean particle hydrodynamic size (HS), zeta potential (ZP) and polydispersity index (PI) were set as the dependent variables. The V23x31 factorial design constructed led to optimization of the higher (+1) and lower (-1) levels, with triplicate testing for the central (0) level, thus producing thirty three experiments and leading to selection of the optimized processing parameters as 0.015% (w/w) protein entity, 0.75% (w/w) lipophilic emulsifier (soybean lecithin) and 0.50% (w/w) hydrophilic emulsifier (poloxamer 188). In the present research effort, statistical optimization and production of protein derivatives encompassing full stabilization of their three-dimensional structure, has been attempted via housing said molecular entities within biomimetic aqueous-core lipid nanoballoons integrating a multiple (W/O/W) emulsion.
Resumo:
The structure of polydisperse hard sphere fluids, in the presence of a wall, is studied by the Rosenfeld density functional theory. Within this approach, the local excess free energy depends on only four combinations of the full set of density fields. The case of continuous polydispersity thereby becomes tractable. We predict, generically, an oscillatory size segregation close to the wall, and connect this, by a perturbation theory for narrow distributions, with the reversible work for changing the size of one particle in a monodisperse reference fluid.
Resumo:
Self-nanoemulsifying drug delivery systems of gemfibrozil were developed under Quality by Design approach for improvement of dissolution and oral absorption. Preliminary screening was performed to select proper components combination. BoxBehnken experimental design was employed as statistical tool to optimize the formulation variables, X1 (Cremophor® EL), X2 (Capmul® MCM-C8), and X3 (lemon essential oil). Systems were assessed for visual characteristics (emulsification efficacy), turbidity, droplet size, polydispersity index and drug release. Different pH media were also assayed for optimization. Following optimization, the values of formulation components (X1, X2, and X3) were 32.43%, 29.73% and 21.62%, respectively (16.22% of gemfibrozil). Transmission electron microscopy demonstrated spherical droplet morphology. SNEEDS release study was compared to commercial tablets. Optimized SNEDDS formulation of gemfibrozil showed a significant increase in dissolution rate compared to conventional tablets. Both formulations followed Weibull mathematical model release with a significant difference in td parameter in favor of the SNEDDS. Equally amodelistic parameters were calculated being the dissolution efficiency significantly higher for SNEDDS, confirming that the developed SNEDDS formulation was superior to commercial formulation with respect to in vitro dissolution profile. This paper provides an overview of the SNEDDS of the gemfibrozil as a promising alternative to improve oral absorption.
Resumo:
This review deals with the homo- and copolymerization of styrene with nickel catalysts. The catalytic activity, polymer stereoregularity, polymer molecular weight and polydispersity are dependent upon nickel ligands and reaction parameters. Catalysts supported on silica, treated with methylaluminoxane (MAO), have shown higher stereospecificity and activity compared to homogeneous ones. The influence of these parameters is discussed focusing on the elucidation of some aspects of the polymerization mechanism.
Resumo:
The characterization of dextran in sugars by size exclusion chromatography (SEC) has been carried out according to the number-average molecular weight (Mn), the weight-average molecular weight (Mw), the Z-average molecular weight (Mz), and the polydispersity (Mw/Mn). The results suggest that all the analyzed thirty sugar samples from São Paulo state were contaminated with two or three different dextran polymers. The collected data clearly point out that the total dextran content together with the mass distribution parameters Mw, Mn, Mz, and Mw/Mn should be considered during the evaluation of the quality of the sugar used for the cachaça sweeting process.
Caracterização das O-acetil-(4-O-metilglicurono)xilanas isoladas da madeira de Eucalyptus urograndis
Resumo:
The O-acetyl-4-O-methyl-(glucurono)xylans were isolated from E. urograndis by extraction with dimethyl sulfoxide, analysed for monosaccharide composition and structurally characterized by NMR spectroscopy. These xylans contained one 4-O-methyl-glucuronic acid substituent and 5.5 acetyl groups for approximately 10 xylose residues. About 10% of 4-O-methyl-glucuronic acid (MeGlcA) units were branched at O-2. The O-acetyl-4-O-methyl-(glucurono)-xylans were composed of the following (1 → 4)-linked β-D-xylopyranosyl structural elements: unsubstituted (51 mol%), 2-O-acetylated (12 mol%), 3-O-acetylated (20 mol%), 2,3-di-O-acetylated (6 mol%) and [MeGlcA α-(1 → 2)] [3-O-acetylated] (11 mol%). The weight-average molar mass and polydispersity of this xylan were 34.9 kDa and 1.16, respectively, as measured by size-exclusion chromatography.
Resumo:
In this paper we describe the preparation poly (L-lactide) (PLA) nanocapsules as a drug delivery system for the local anesthetic benzocaine. The characterization and in vitro release properties of the system were investigated. The characterization results showed a polydispersity index of 0.14, an average diameter of 190.1± 3 nm, zeta potential of -38.5 mV and an entrapment efficiency of 73%. The release profile of Benzocaine loaded in PLA nanocapsules showed a significant different behavior than that of the pure anesthetic in solution. This study is important to characterize a drug release system using benzocaine for application in pain treatment.
Resumo:
Nanoparticles were produced by solvent emulsification evaporation method with the following characteristics: nanometric size (238 ± 3 nm), narrow polydispersity index (0.11), negative zeta potential (-15.1 mV), good yield of the process (73 ± 1.5%), excellent encapsulation efficiency (81.3 ± 4.2%) and spherical shape. X-rays diffraction demonstrated the loss of drug crystallinity after encapsulation; however, the profile of the diffractograms of the poly-ε-caprolactone (PCL) nanoparticles was kept. Differential scanning calorimetry thermograms, correspondingly, exhibited the loss of drug melting peak and the increasing of the melting point of the PCL nanoparticles, evidencing an interaction drug-polymer. Naproxen release was low and sustained obeying the Higuchi´s kinetic. The results show that nanoparticles are promising sustained release system to the naproxen.