946 resultados para Poly(vinyl Alcohol) Hydrogel


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing amounts of plastic waste in the environment have become a problem of gigantic proportions. The case of linear low-density polyethylene (LLDPE) is especially significant as it is widely used for packaging and other applications. This synthetic polymer is normally not biodegradable until it is degraded into low molecular mass fragments that can be assimilated by microorganisms. Blends of nonbiodegradable polymers and biodegradable commercial polymers such as poly (vinyl alcohol) (PVA) can facilitate a reduction in the volume of plastic waste when they undergo partial degradation. Further, the remaining fragments stand a greater chance of undergoing biodegradation in a much shorter span of time. In this investigation, LLDPE was blended with different proportions of PVA (5–30%) in a torque rheometer. Mechanical, thermal, and biodegradation studies were carried out on the blends. The biodegradability of LLDPE/PVA blends has been studied in two environments: (1) in a culture medium containing Vibrio sp. and (2) soil environment, both over a period of 15 weeks. Blends exposed to culture medium degraded more than that exposed to soil environment. Changes in various properties of LLDPE/PVA blends before and after degradation were monitored using Fourier transform infrared spectroscopy, a differential scanning calorimeter (DSC) for crystallinity, and scanning electron microscope (SEM) for surface morphology among other things. Percentage crystallinity decreased as the PVA content increased and biodegradation resulted in an increase of crystallinity in LLDPE/PVA blends. The results prove that partial biodegradation of the blends has occurred holding promise for an eventual biodegradable product

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel redox- and glucose-responsive hydrogels have been synthesized by simple mixing of poly(vinyl alcohol) (PVA) and 4-mercaptophenylboronic acid (MPBA) in aqueous solutions (pH > 9) in an oxidative aqueous media. These hydrogels are produced through the formation of disulfide linkages between MPBA molecules in an oxidative environment (oxygen dissolved in solution or hydrogen peroxide added to the reaction mixture) and complexation via dynamic covalent bonds between PVA and MPBA dimer. These hydrogels show degradation in solutions of l-glutathione and d-glucose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rainfastness is the ability of agrochemical deposits to resist wash-off by rain and other related environmental phenomena. This work reports laboratory-scale and raintower studies of the rainfastness of fluorescently labeled poly(vinyl alcohol) (PVA) using fluorescent microscopy combined with image analysis. Samples of hydrolyzed PVA exhibit improved rainfastness over a threshold molecular weight, which correlates with PVA film dissolution, swelling, and crystalline properties. It was also established that the rainfastness of PVA scaled with the molecular weight over this threshold. These PVA samples were further characterized in order to determine the effect of the crystallinity on rainfastness. The quantification of rainfastness is of great interest to the field of agrochemical formulation development in order to improve the efficacy of pesticides and their adjuvants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to study the theological and thermal properties of film forming solutions (FFS) based on blends of gelatin and poly(vinyl alcohol) (PVA). The effect of the PVA concentration and plasticizer presence on the flow behavior, and viscoelastic and thermal properties of FFS was studied by steady-shear flow and oscillatory experiments, and also, by microcalorimetry. The FB presented Newtonian behavior at 30 degrees C, and the viscosity was not affected neither by the PVA concentration nor by the plasticizer. All FFS presented a phase transition during tests applying temperature scanning. It was verified that the PVA affected the viscoelastic properties of FFS by dilution of gelatin. This behavior was confirmed by microcalorimetric analysis. The behaviors of the storage (G`) and loss (G ``) moduli as a function of frequency of FFS obtained at 5 degrees C were typical of physical gels; with the G` higher than the G ``. The strength of the gels was affected by the PVA concentration. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both gelatin and poly(vinyl alcohol) (PVA) can be cross linked with glutaraldehyde (GLU). In the case of gelatin, the GLU reacts with each e-NH2 functional group of adjacent lysine residues, while for PVA, the GLU reacts with two adjacent hydroxyl groups, forming acetal bridges. Thus it can be considered possible to cross link adjacent macromolecules of gelatin and PVA using GLU. In this context, the aims of this work were the development of biodegradable films based on blends of gelatin and poly(vinyl alcohol) cross linked with GLU, and the characterization of some of their main physical and functional properties. All the films were produced from film-forming solutions (FFS) containing 2 g macromolecules (PVA + gelatin)/100 g FFS, 25 g glycerol/100 g macromolecules, and 4 g GLU (25% solution)/100 g FFS. The FFS were prepared with two concentrations of PVA (20 or 50 g PVA/100 g macromolecules) and two reaction temperatures: 90 or 55 degrees C, applied for 30 min. The films were obtained after drying (30 degrees C/24 h) and conditioning at 25 degrees C and 58% of relative humidity for 7 days, and were then characterized. The results for the color parameters, mechanical properties, phase transitions and infrared spectra showed that some chemical modifications occurred, principally for the gelatin. However, in general, all the characteristics of the films were either typical of films based on blends of these macromolecules without cross linking, or slightly higher. A greater improvement in the properties of this material was probably not observed due to the crystallinity of the PVA, which has a melting point above 90 degrees C. The presence of microcrystals in the polymer chain probably reduced macromolecular mobility, hindering the reaction. Thus more research is necessary to produce biodegradable films with improved properties. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to study the effect of the hydrolysis degree (HD) and the concentration (C(PVA)) Of two types of poly(vinyl alcohol) (PVA) and of the type (glycerol and sorbitol) and the concentration (C(P)) of plasticizers on some physical properties of biodegradable films based on blends of gelatin and PVA Using a response-surface methodology. The films were prepared with a film forming solutions (FFS) with 2 g of macromolecules (gelatin+PVA)/100 g de FFS. The responses analyzed were the mechanical properties, the solubility, the moisture Content. the color difference and the opacity. The linear model was statistically significant and predictive for puncture force and deformation. elongation at break, solubility in water, Moisture content and opacity. The CPVA affected strongly the elongation at break of the films. The interaction of the HD and the C(P) affected this property. Moreover. the puncture force was affected slightly by the C(PVA). Concerning the Solubility in water, the reduction of the HD increased it and this effect was greater for high CPVA Values. In general. the most important effect observed in the physical properties of the films was that of the plasticizer type and concentration. The PVA hydrolysis degree and concentration have an important effect only for the elongation at break, puncture deformation and solubility in water. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to study the effect of the poly(vinyl alcohol) (PVA) concentration on the thermal and viscoelastic properties of films based on blends of gelatin and PVA using differential scanning calorimetry (DSC) and dynamic-mechanical analysis (DMA). One glass transition was observed between 43 and 49 degrees C on the DSC curves obtained in the first scanning of the blended films, followed by fusion of the crystalline portion between 116 and 134 degrees C. However, the DMA results showed that only the films with 10% PVA had a single peak in the tan 5 spectrum. However, when the PVA concentration was increased the dynamic mechanical spectra showed two peaks on the tan 6 curves, indicating two T(g)s. Despite this phase separation behavior the Gordon and Taylor model was successfully applied to correlate T, as a function of film composition, thus determining k = 7.47. In the DMA frequency tests, the DMA spectra showed that the storage modulus values decreased with increasing temperature. The master curves for the PVA-gelatin films were obtained applying the TTS principle (T(r) = 100 degrees C). The WLF model was thus applied allowing for the determination of the constants C(1) and C(2). The values of these constants increased with increasing PVA concentrations in the blend: C(1) = 49-66 and C(2) = 463-480. These values were used to calculate the fractional free volume of the films at the T(g) and the thermal expansion coefficient of the films above the T(g). (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to develop biodegradable films based on blends of gelatin and poly (vinyl alcohol) (PVA), without a plasticizer. Firstly, the effect of five types of PVA with different degree of hydrolysis (DH) on the physical properties of films elaborated with blends containing 23.1% PVA was studied. One PVA type was then chosen for the study of the effect of the PVA concentration on the mechanical properties, color, opacity, gloss, and water solubility of the films. The five types of PVA studied allowed for films with different characteristics, but with no direct relationship with the DH of the PVA. Therefore, the PVA Celvol (R) 418 with a DH = 91.8% was chosen for the second part, because they produced films with greater tensile strength. The PVA concentration affected all studied properties of films. These results could be explained by the results of the DSC and FTIR analyses, which showed that some interactions between the gelatin and the PVA occurred depending on the PVA concentration, affecting the crystallinity of the films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coating of cotton fiber is used in the textile industry to increase the mechanical resistance of the yarn and their resistance to vibration, friction, impact, and elongation, which are some of the forces to which the yarn is subjected during the weaving process. The main objective of this study was to investigate the use of synthetic hydrophilic polymers, poly(vinyl alcohol) (PVA), and poly(N-vinyl-2-pyrrolidone) (PVP) to coat 100% cotton textile fiber, with the aim of giving the fiber temporary mechanical resistance. For the fixation of the polymer on the fiber, UV-C radiation was used as the crosslinking process. The influence of the crosslinking process was determined through tensile testing of the coated fibers. The results indicated that UV-C radiation increased the mechanical resistance of the yarn coated with PVP by up to 44% and the yarn coated with PVA by up to 67% compared with the pure cotton yarn, that is, without polymeric coating and crosslinking. This study is of great relevance, and it is important to consider that UV-C radiation dispenses with the use of chemical substances and prevents the generation of toxic waste at the end of the process. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 2560-2567, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica wet gels were prepared from acid sonohydrolysis of tetraethoxysilane (TEOS) and additions of poly(vinyl alcohol) (PVA)-water solution. Aerogels were obtained from supercritical CO(2) extraction. The samples were studied by thermal gravimetric (TG) analysis, small-angle X-ray scattering (SAXS), and nitrogen adsorption. The structure of wet gels can be described as a mass fractal with dimension D equal to 2.0 on the whole length scale experimentally probed by SAXS, from similar to 0.3 to similar to 15 nm. Pure and low-PVA-addition wet gels exhibit an upper cutoff accounting for a finite characteristic length xi of the mass fractal structure. Additions , of PVA increase without modifying D, which was attributed to a steric effect of the polymer in the structure. The pore volume fraction of the aerogels diminishes typically about 11% with respect to that of the wet gels, although nitrogen adsorption could be underestimating some porosity. The pore size distribution of the aerogels is shifted toward the mesopore region with the additions of PVA, in a straight relationship with the increase of xi in the wet gels. The thermal stability of the pore size distribution of the aerogels was studied up to 1000 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A kraft lignin derivative (KLD) obtained by reaction with p-aminobenzoic acid/phthalic anhydride was blended with poly(vinyl alcohol) (PVA) by solution casting from DMSO. PVA and PVA/KLD films were exposed to ultraviolet radiation (24, 48, and 96 h) and analyzed by thermogravimetry (TG), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance (H-1 NMR) spectroscopy, and scanning electron microscopy (SEM). PVA films show a loss of thermal stability due to irradiation. PVA/KLD reveals greater thermal stability than PVA and an increase in thermal stability after irradiation. These results suggest that the incorporation of KLD into PVA provides a gain in thermal and photochemical stability. FTIR, H-1 NMR, DSC, and TG results obtained for the blends suggest that intermolecular interactions between PVA and KLD chains are present. SEM micrographs revealed blend miscibility for a KLD blend content of up to 15 wt%, as observed at magnification of 1000 times. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper we investigated the effect of adsorbed PVA on Pt electrodes on classic electrochemical processes such as hydrogen UPD, oxygen reduction and CO electro-oxidation. Upon adsorption PVA blocks roughly 50% of the hydrogen sites and can not be removed from the Pt surface through cycling in the potential range of 0.05-1.0 V vs. RHE. Potentiodynamic experiments under controlled hydrodynamic conditions provided by rotating disk electrode experiments showed a negative impact of the adsorbed PVA on the oxygen reduction reaction (ORR). Cyclic-voltammetry results revealed that not even CO was able to remove PVA from the Pt surface. Regarding the oxidation of CO, the adsorbed polymer positively shifted the CO oxidation peak potential, therefore higher potentials are required to free the Pt surface from CO poisoning. In situ Fourier transform infrared spectroscopy evidenced that the presence of PVA shifted the linearly bound CO frequency toward higher wavenumbers, a process found to be independent of the Pt surface orientation. In situ electrochemical X-ray absorption spectroscopy results showed that PVA also impacted the electronic properties of platinum by decreasing the occupancy of the Pt conducting 5d band. Our findings clearly support the efforts toward understanding the nature of the interaction between polymers and metallic surfaces as well as the impact on technological applications (e.g. in PEMFCs). © 2013 Elsevier Ltd. All rights reserved.