990 resultados para Poisson Distribution
Resumo:
Pós-graduação em Engenharia de Produção - FEB
Resumo:
The purpose of this paper is to develop a Bayesian analysis for the right-censored survival data when immune or cured individuals may be present in the population from which the data is taken. In our approach the number of competing causes of the event of interest follows the Conway-Maxwell-Poisson distribution which generalizes the Poisson distribution. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the proposed model. Also, some discussions on the model selection and an illustration with a real data set are considered.
Resumo:
In this paper, a new family of survival distributions is presented. It is derived by considering that the latent number of failure causes follows a Poisson distribution and the time for these causes to be activated follows an exponential distribution. Three different activation schemes are also considered. Moreover, we propose the inclusion of covariates in the model formulation in order to study their effect on the expected value of the number of causes and on the failure rate function. Inferential procedure based on the maximum likelihood method is discussed and evaluated via simulation. The developed methodology is illustrated on a real data set on ovarian cancer.
Resumo:
In this article, we propose a new Bayesian flexible cure rate survival model, which generalises the stochastic model of Klebanov et al. [Klebanov LB, Rachev ST and Yakovlev AY. A stochastic-model of radiation carcinogenesis - latent time distributions and their properties. Math Biosci 1993; 113: 51-75], and has much in common with the destructive model formulated by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)]. In our approach, the accumulated number of lesions or altered cells follows a compound weighted Poisson distribution. This model is more flexible than the promotion time cure model in terms of dispersion. Moreover, it possesses an interesting and realistic interpretation of the biological mechanism of the occurrence of the event of interest as it includes a destructive process of tumour cells after an initial treatment or the capacity of an individual exposed to irradiation to repair altered cells that results in cancer induction. In other words, what is recorded is only the damaged portion of the original number of altered cells not eliminated by the treatment or repaired by the repair system of an individual. Markov Chain Monte Carlo (MCMC) methods are then used to develop Bayesian inference for the proposed model. Also, some discussions on the model selection and an illustration with a cutaneous melanoma data set analysed by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)] are presented.
Resumo:
This study retrospectively evaluated the spatial and temporal disease patterns associated with influenza-like illness (ILI), positive rapid influenza antigen detection tests (RIDT), and confirmed H1N1 S-OIV cases reported to the Cameron County Department of Health and Human Services between April 26 and May 13, 2009 using the space-time permutation scan statistic software SaTScan in conjunction with geographical information system (GIS) software ArcGIS 9.3. The rate and age-adjusted relative risk of each influenza measure was calculated and a cluster analysis was conducted to determine the geographic regions with statistically higher incidence of disease. A Poisson distribution model was developed to identify the effect that socioeconomic status, population density, and certain population attributes of a census block-group had on that area's frequency of S-OIV confirmed cases over the entire outbreak. Predominant among the spatiotemporal analyses of ILI, RIDT and S-OIV cases in Cameron County is the consistent pattern of a high concentration of cases along the southern border with Mexico. These findings in conjunction with the slight northward space-time shifts of ILI and RIDT cluster centers highlight the southern border as the primary site for public health interventions. Finally, the community-based multiple regression model revealed that three factors—percentage of the population under age 15, average household size, and the number of high school graduates over age 25—were significantly associated with laboratory-confirmed S-OIV in the Lower Rio Grande Valley. Together, these findings underscore the need for community-based surveillance, improve our understanding of the distribution of the burden of influenza within the community, and have implications for vaccination and community outreach initiatives.^
Resumo:
Count data with excess zeros relative to a Poisson distribution are common in many biomedical applications. A popular approach to the analysis of such data is to use a zero-inflated Poisson (ZIP) regression model. Often, because of the hierarchical Study design or the data collection procedure, zero-inflation and lack of independence may occur simultaneously, which tender the standard ZIP model inadequate. To account for the preponderance of zero counts and the inherent correlation of observations, a class of multi-level ZIP regression model with random effects is presented. Model fitting is facilitated using an expectation-maximization algorithm, whereas variance components are estimated via residual maximum likelihood estimating equations. A score test for zero-inflation is also presented. The multi-level ZIP model is then generalized to cope with a more complex correlation structure. Application to the analysis of correlated count data from a longitudinal infant feeding study illustrates the usefulness of the approach.
Resumo:
The factors determining the size of individual β-amyloid (A,8) deposits and their size frequency distribution in tissue from Alzheimer's disease (AD) patients have not been established. In 23/25 cortical tissues from 10 AD patients, the frequency of Aβ deposits declined exponentially with increasing size. In a random sample of 400 Aβ deposits, 88% were closely associated with one or more neuronal cell bodies. The frequency distribution of (Aβ) deposits which were associated with 0,1,2,...,n neuronal cell bodies deviated significantly from a Poisson distribution, suggesting a degree of clustering of the neuronal cell bodies. In addition, the frequency of Aβ deposits declined exponentially as the number of associated neuronal cell bodies increased. Aβ deposit area was positively correlated with the frequency of associated neuronal cell bodies, the degree of correlation being greater for pyramidal cells than smaller neurons. These data suggested: (1) the number of closely adjacent neuronal cell bodies which simultaneously secrete Aβ was an important factor determining the size of an Aβ deposit and (2) the exponential decline in larger Aβ deposits reflects the low probability that larger numbers of adjacent neurons will secrete Aβ simultaneously to form a deposit. © 1995.
Resumo:
An organism living in water, and present at low density, may be distributed at random and therefore, samples taken from the water are likely to be distributed according to the Poisson distribution. The distribution of many organisms, however, is not random, individuals being either aggregated into clusters or more uniformly distributed. By fitting a Poisson distribution to data, it is only possible to test the hypothesis that an observed set of frequencies does not deviate significantly from an expected random pattern. Significant deviations from random, either as a result of increasing uniformity or aggregation, may be recognized by either rejection of the random hypothesis or by examining the variance/mean (V/M) ratio of the data. Hence, a V/M ratio not significantly different from unity indicates a random distribution, greater than unity a clustered distribution, and less then unity a regular or uniform distribution . If individual cells are clustered, however, the negative binomial distribution should provide a better description of the data. In addition, a parameter of this distribution, viz., the binomial exponent (k), may be used as a measure of the ‘intensity’ of aggregation present. Hence, this Statnote describes how to fit the negative binomial distribution to counts of a microorganism in samples taken from a freshwater environment.
Resumo:
Onion (Allium cepa) is one of the most cultivated and consumed vegetables in Brazil and its importance is due to the large laborforce involved. One of the main pests that affect this crop is the Onion Thrips (Thrips tabaci), but the spatial distribution of this insect, although important, has not been considered in crop management recommendations, experimental planning or sampling procedures. Our purpose here is to consider statistical tools to detect and model spatial patterns of the occurrence of the onion thrips. In order to characterize the spatial distribution pattern of the Onion Thrips a survey was carried out to record the number of insects in each development phase on onion plant leaves, on different dates and sample locations, in four rural properties with neighboring farms under different infestation levels and planting methods. The Mantel randomization test proved to be a useful tool to test for spatial correlation which, when detected, was described by a mixed spatial Poisson model with a geostatistical random component and parameters allowing for a characterization of the spatial pattern, as well as the production of prediction maps of susceptibility to levels of infestation throughout the area.
Resumo:
Dimensionless spray flux Ψa is a dimensionless group that characterises the three most important variables in liquid dispersion: flowrate, drop size and powder flux through the spray zone. In this paper, the Poisson distribution was used to generate analytical solutions for the proportion of nuclei formed from single drops (fsingle) and the fraction of the powder surface covered by drops (fcovered) as a function of Ψa. Monte-Carlo simulations were performed to simulate the spray zone and investigate how Ψa, fsingle and fcovered are related. The Monte-Carlo data was an excellent match with analytical solutions of fcovered and fsingle as a function of Ψa. At low Ψa, the proportion of the surface covered by drops (fcovered) was equal to Ψa. As Ψa increases, drop overlap becomes more dominant and the powder surface coverage levels off. The proportion of nuclei formed from single drops (fsingle) falls exponentially with increasing Ψa. In the ranges covered, these results were independent of drop size, number of drops, drop size distribution (mono-sized, bimodal and trimodal distributions), and the uniformity of the spray. Experimental data of nuclei size distributions as a function of spray flux were fitted to the analytical solution for fsingle by defining a cutsize for single drop nuclei. The fitted cutsizes followed the spray drop sizes suggesting that the method is robust and that the cutsize does indicate the transition size between single drop and agglomerate nuclei. This demonstrates that the nuclei distribution is determined by the dimensionless spray flux and the fraction of drop controlled nuclei can be calculated analytically in advance.
Resumo:
The monitoring of infection control indicators including hospital-acquired infections is an established part of quality maintenance programmes in many health-care facilities. However, surveillance data use can be frustrated by the infrequent nature of many infections. Traditional methods of analysis often provide delayed identification of increasing infection occurrence, placing patients at preventable risk. The application of Shewhart, Cumulative Sum (CUSUM) and Exponentially Weighted Moving Average (EWMA) statistical process control charts to the monitoring of indicator infections allows continuous real-time assessment. The Shewhart chart will detect large changes, while CUSUM and EWMA methods are more suited to recognition of small to moderate sustained change. When used together, Shewhart and EWMA methods are ideal for monitoring bacteraemia and multiresistant organism rates. Shewhart and CUSUM charts are suitable for surgical infection surveillance.
Resumo:
Several studies have confirmed seasonal variation in suicide rates according to hours of sunshine. The suicide pattern was assessed in São Paulo, southeastern Brazil, at the tropic of Capricorn from 1996 to 2004. Poisson regression was employed to estimate parameters of seasonality, as well as to verify associations for each day between daylight duration and suicide. During the nine-year study period, there were 3,984 suicides (76.9% in men; median age=38.7 years old). Seasonal averages of suicides were similar, as were monthly averages. Poisson regression did not reveal any association between suicide rates and hours of sunshine (p=0.45) for both sexes. In conclusion, no seasonal pattern was observed for suicides.
Resumo:
In this article, we present the first study on probabilistic tsunami hazard assessment for the Northeast (NE) Atlantic region related to earthquake sources. The methodology combines the probabilistic seismic hazard assessment, tsunami numerical modeling, and statistical approaches. We consider three main tsunamigenic areas, namely the Southwest Iberian Margin, the Gloria, and the Caribbean. For each tsunamigenic zone, we derive the annual recurrence rate for each magnitude range, from Mw 8.0 up to Mw 9.0, with a regular interval, using the Bayesian method, which incorporates seismic information from historical and instrumental catalogs. A numerical code, solving the shallow water equations, is employed to simulate the tsunami propagation and compute near shore wave heights. The probability of exceeding a specific tsunami hazard level during a given time period is calculated using the Poisson distribution. The results are presented in terms of the probability of exceedance of a given tsunami amplitude for 100- and 500-year return periods. The hazard level varies along the NE Atlantic coast, being maximum along the northern segment of the Morocco Atlantic coast, the southern Portuguese coast, and the Spanish coast of the Gulf of Cadiz. We find that the probability that a maximum wave height exceeds 1 m somewhere in the NE Atlantic region reaches 60 and 100 % for 100- and 500-year return periods, respectively. These probability values decrease, respectively, to about 15 and 50 % when considering the exceedance threshold of 5 m for the same return periods of 100 and 500 years.
Resumo:
INTRODUCTION: The purpose of this ecological study was to evaluate the urban spatial and temporal distribution of tuberculosis (TB) in Ribeirão Preto, State of São Paulo, southeast Brazil, between 2006 and 2009 and to evaluate its relationship with factors of social vulnerability such as income and education level. METHODS: We evaluated data from TBWeb, an electronic notification system for TB cases. Measures of social vulnerability were obtained from the SEADE Foundation, and information about the number of inhabitants, education and income of the households were obtained from Brazilian Institute of Geography and Statistics. Statistical analyses were conducted by a Bayesian regression model assuming a Poisson distribution for the observed new cases of TB in each area. A conditional autoregressive structure was used for the spatial covariance structure. RESULTS: The Bayesian model confirmed the spatial heterogeneity of TB distribution in Ribeirão Preto, identifying areas with elevated risk and the effects of social vulnerability on the disease. We demonstrated that the rate of TB was correlated with the measures of income, education and social vulnerability. However, we observed areas with low vulnerability and high education and income, but with high estimated TB rates. CONCLUSIONS: The study identified areas with different risks for TB, given that the public health system deals with the characteristics of each region individually and prioritizes those that present a higher propensity to risk of TB. Complex relationships may exist between TB incidence and a wide range of environmental and intrinsic factors, which need to be studied in future research.