932 resultados para Poisson Arrivals
Resumo:
We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.
Resumo:
We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.
Resumo:
We develop a fast Poisson preconditioner for the efficient numerical solution of a class of two-sided nonlinear space fractional diffusion equations in one and two dimensions using the method of lines. Using the shifted Gr¨unwald finite difference formulas to approximate the two-sided(i.e. the left and right Riemann-Liouville) fractional derivatives, the resulting semi-discrete nonlinear systems have dense Jacobian matrices owing to the non-local property of fractional derivatives. We employ a modern initial value problem solver utilising backward differentiation formulas and Jacobian-free Newton-Krylov methods to solve these systems. For efficient performance of the Jacobianfree Newton-Krylov method it is essential to apply an effective preconditioner to accelerate the convergence of the linear iterative solver. The key contribution of our work is to generalise the fast Poisson preconditioner, widely used for integer-order diffusion equations, so that it applies to the two-sided space fractional diffusion equation. A number of numerical experiments are presented to demonstrate the effectiveness of the preconditioner and the overall solution strategy.
Resumo:
This paper evaluates the performances of prediction intervals generated from alternative time series models, in the context of tourism forecasting. The forecasting methods considered include the autoregressive (AR) model, the AR model using the bias-corrected bootstrap, seasonal ARIMA models, innovations state space models for exponential smoothing, and Harvey’s structural time series models. We use thirteen monthly time series for the number of tourist arrivals to Hong Kong and Australia. The mean coverage rates and widths of the alternative prediction intervals are evaluated in an empirical setting. It is found that all models produce satisfactory prediction intervals, except for the autoregressive model. In particular, those based on the biascorrected bootstrap perform best in general, providing tight intervals with accurate coverage rates, especially when the forecast horizon is long.
Resumo:
Given the growing importance of the Chinese tourist market to Australia, an understanding of Chinese tourists' arrival patterns is essential to accurate forecasting of future arrivals. Drawing on 25 years of records (1991-2015), this study developed a time-series model of monthly arrivals of Chinese tourists in Australia. The model reflects the exponentially increasing trend and strong seasonality of arrivals. Excellent results from validation of the model's forecasts endorsed this time-series model's potential in the policy prescription and management practice of Australian tourism industries.
Resumo:
[Book] The potential of electric light as a new building “material” was recognized in the 1920s and became a useful design tool by the mid-century. Skillful lighting allowed for theatricality, narrative, and a new emphasis on structure and space. The Structure of Light tells the story of the career of Richard Kelly, the field’s most influential figure. Six historians, architects, and practitioners explore Kelly’s unparalleled influence on modern architecture and his lighting designs for some of the 20th century’s most iconic buildings: Philip Johnson’s Glass House; Louis Kahn’s Kimbell Art Museum; Eero Saarinen’s GM Technical Center; and Mies van der Rohe’s Seagram Building, among many others. This beautifully illustrated history demonstrates the range of applications, building types, and artistic solutions he employed to achieve a “nocturnal modernity” that would render buildings evocatively different at night. The survival of Kelly’s rich correspondence and extensive diaries allows an in-depth look at the triumphs and uncertainties of a young profession in the making. The first book to focus on the contributions of a master in the field of architectural lighting, this fascinating volume celebrates the practice’s significance in modern design.
Resumo:
Previous techniques used for solving the 1-D Poisson equation ( PE) rigorously for long-channel asymmetric and independent double-gate (IDG) transistors result in potential models that involve multiple intercoupled implicit equations. As these equations need to be solved self-consistently, such potential models are clearly inefficient for compact modeling. This paper reports a different rigorous technique for solving the same PE by which one can obtain the potential profile of a generalized IDG transistor that involves a single implicit equation. The proposed Poisson solution is shown to be computationally more efficient for circuit simulation than the previous solutions.
Resumo:
By using the bender and extender elements tests, together with measurements of the travel times of shear (S) and primary (P) waves, the variation of Poisson ratio (nu) was determined for dry sands with respect to changes in relative densities and effective confining pressures (sigma(3)). The tests were performed for three different ranges of particle sizes. The magnitude of the Poisson ratio decreases invariably with an increase in both the relative density and the effective confining pressure. The effect of the confining pressure on the Poisson ratio was found to become relatively more significant for fine-grained sand as compared with the coarse-grained sand. For a given material, at a particular value of sigma(3), the magnitude of the Poisson ratio decreases, almost in a linear fashion, with an increase in the value of maximum shear modulus (G(max)). The two widely used correlations in literature, providing the relationships among G(max), void ratio (e) and effective confining pressure (sigma(3)), applicable for angular granular materials, were found to compare reasonably well with the present experimental data for the fine- and medium-grained sands. However, for the coarse-grained sand, these correlations tend to overestimate the values of G(max).
Resumo:
We consider discrete-time versions of two classical problems in the optimal control of admission to a queueing system: i) optimal routing of arrivals to two parallel queues and ii) optimal acceptance/rejection of arrivals to a single queue. We extend the formulation of these problems to permit a k step delay in the observation of the queue lengths by the controller. For geometric inter-arrival times and geometric service times the problems are formulated as controlled Markov chains with expected total discounted cost as the minimization objective. For problem i) we show that when k = 1, the optimal policy is to allocate an arrival to the queue with the smaller expected queue length (JSEQ: Join the Shortest Expected Queue). We also show that for this problem, for k greater than or equal to 2, JSEQ is not optimal. For problem ii) we show that when k = 1, the optimal policy is a threshold policy. There are, however, two thresholds m(0) greater than or equal to m(1) > 0, such that mo is used when the previous action was to reject, and mi is used when the previous action was to accept.