920 resultados para Platinum surfaces


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethanol oxidation has been studied on stepped platinum single crystal electrodes in acid media using electrochemical and Fourier transform infrared (FTIR) techniques. The electrodes used belong to two different series of stepped surfaces: those having (111) terraces with (100) monoatomic steps and those with (111) terraces with (110) monoatomic steps. The behaviors of the two series of stepped surfaces for the oxidation of ethanol are very different. On the one hand, the presence of (100) steps on the (111) terraces provides no significant enhancement of the activity of the surfaces. On the other hand, (110) steps have a double effect on the ethanol oxidation reaction. At potentials below 0.7 V, the step catalyzes the C-C bond cleavage and also the oxidation of the adsorbed CO species formed. At higher potentials, the step is not only able to break the C-C bond, but also to catalyze the oxidation of ethanol to acetic acid and acetaldehyde. The highest catalytic activity from voltammetry for ethanol oxidation was obtained with the Pt(554) electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethanol oxidation has been studied on Pt(111), Pt(100) and Pt(110) electrodes in order to investigate the effect of the surface structure and adsorbing anions using electrochemical and FTIR techniques. The results indicate that the surface structure and anion adsorption affect significantly the reactivity of the electrode. Thus, the main product of the oxidation of ethanol on the Pt(111) electrode is acetic acid, and acetaldehyde is formed as secondary product. Moreover, the amount of CO formed is very small, and probably associated with the defects present on the electrode surface. For that reason, the amount of CO(2) is also small. This electrode has the highest catalytic activity for the formation of acetic acid in perchloric acid. However, the formation of acetic acid is inhibited by the presence of specifically adsorbed anions, such as (bi) sulfate or acetate, which is the result of the formation of acetic acid. On the other hand, CO is readily formed at low potentials on the Pt(100) electrode, blocking completely the surface. Between 0.65 and 0.80 V, the CO layer is oxidized and the production of acetaldehyde and acetic acid is detected. The Pt(110) electrode displays the highest catalytic activity for the splitting of the C-C bond. Reactions giving rise to CO formation, from either ethanol or acetaldehyde, occur at high rate at any potential. On the other hand, the oxidation of acetaldehyde to acetic acid has probably the lower reaction rate of the three basal planes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidation of ethanol on ruthenium-modified Pt(775) and Pt(332) stepped electrodes has been studied using electrochemical and FTIR techniques. It has been found that the oxidation of ethanol on these electrodes takes place preferentially on the step sites yielding CO(2) as the major final product. The cleavage of the C-C bond, which is the required step to yield CO(2), occurs only on this type of site. The presence of low ruthenium coverages on the step sites promotes the complete oxidation of ethanol since it facilitates the oxidation of CO formed on the step from the cleavage of the C-C bond. However, high ruthenium coverages have an important inhibiting effect since the adatoms block the step sites, which are required for the cleavage of the C-C bond. Under these conditions, the oxidation current diminishes and the major product in the oxidation process is acetic acid, which is the product formed preferentially on the (111) terrace sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the open circuit interaction of methanol and ethanol with oxidized platinum electrodes using in situ infrared spectroscopy. For methanol, it was found that formic acid is the main species formed in the initial region of the transient and that the steep decrease of the open circuit potential coincides with an explosive increase in the CO(2) production, which is followed by an increase in the coverage of adsorbed CO. For ethanol, acetaldehyde was the main product detected and only traces of dissolved CO(2) and adsorbed CO were found after the steep potential decay. In both cases, the transients were interpreted in terms of (a) the emergence of sub-surface oxygen in the beginning of the transient, where the oxide content is high, and (b) the autocatalytic production of free platinum sites for lower oxide content during the steep decay of the open circuit potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethanol oxidation on platinum stepped surfaces vicinal to the (111) pole modified by tin has been studied to determine the role of this adatom in the oxidation mechanism. Tin has been slowly deposited so that the initial stages of the deposition take place on the step, and deposition on the terrace only occurs when the step has been completely decorated. Voltammetric and chronoamperometric experiments demonstrate that tin on the step catalyzes the oxidation. The maximum enhancement is found when the step is completely decorated by tin. FTIR experiments using normal and isotopically labeled ethanol have been used to elucidate the effect of the tin adatoms in the mechanism. The obtained results indicate that the role of tin is double: (i) when the surface has sites capable of breaking the C-C bond of the molecule, that is, when the step sites are not completely covered by tin, it promotes the oxidation of CO formed from the molecular fragments to CO(2) through a bifunctional mechanism and (ii) it catalyzes the oxidation of ethanol to acetic acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a focused ion beam (FIB) instrument, electron-transparent samples (termed foils) have been cut from the naturally weathered surfaces of perthitic alkali feldspars recovered from soils overlying the Shap granite, northwest England. Characterization of these foils by transmission electron microscopy (TEM) has enabled determination of the crystallinity and chemical composition of near-surface regions of the feldspar and an assessment of the influence of intragranular microtextures on the microtopography of grain surfaces and development of etch pits. Damage accompanying implantation of the 30 kV Ga+ ions used for imaging and deposition of protective platinum prior to ion milling creates amorphous layers beneath outer grain surfaces, but can be overcome by coating grains with > 85 nm of gold before FIB work. The sidewalls of the foil and feldspar surrounding original voids are also partially amorphized during later stages of ion milling. No evidence was found for the presence of amorphous or crystalline weathering products or amorphous "leached layers" immediately beneath outer grain surfaces. The absence of a leached layer indicates that chemical weathering of feldspar in the Shap soils is stoichiometric, or if non-stoichiometric, either the layer is too thin to resolve by the TEM techniques used (i.e., <=similar to 2.5 nm) or an insufficient proportion of ions have been leached from near-surface regions so that feldspar crystallinity is maintained. No evidence was found for any difference in the mechanisms of weathering where a microbial filament rests on the feldspar surface. Sub-micrometer-sized steps on the grain surface have formed where subgrains and exsolution lamellae have influenced the propagation of fractures during physical weathering, whereas finer scale corrugations form due to compositional or strain-related differences in dissolution rates of albite platelets and enclosing tweed orthoclase. With progressive weathering, etch pits that initiated at the grain surface extend into grain interiors as etch tubes by exploiting preexisting networks of nanopores that formed during the igneous history of the grain. The combination of FIB and TEM techniques is an especially powerful way of exploring mechanisms of weathering within the "internal zone" beneath outer grain surfaces, but results must be interpreted with caution owing to the ease with which artifacts can be created by the high-energy ion and electron beams used in the preparation and characterization of the foils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the presented work, the evaluation of the influence of acetic acid in the electrochemical environment on the ethanol electro-oxidation reaction on a polycrystalline platinum electrode is presented for the first time. Using cyclic voltammetry. chronoamperometry and in situ Fourier Transformed IR spectroscopy (FTIR) it was demonstrated that an inhibition of the ethanol oxidation reaction occurs for bulk acetic acid concentrations of the order 0.1 mu mol L(-1) -5 mmol L(-1). This inhibition effect is related to the decrease of CO(2) and acetaldehyde production as confirmed by spectroscopic results. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ordered intermetallic phases of Pt with several transition metals have been prepared and their electrocatalytic properties studied. In light of these tests it is proposed that these catalysts could be used as electrodes in fuel cells, as they combine an excellent capacity to adsorb organic fuels at the Pt sites with low susceptibility to being poisoned by intermediates and reaction products at the transition-metal sites. An experimental procedure used to obtain the four intermetallic phases Pt-M (M = Mn, Pb, Sb and Sn) is described. The phases thus produced were characterized by X-ray diffraction, scanning electron microscopy with surface analysis by energy-dispersive X-ray spectrometry, scanning tunneling microscopy and X-ray photoelectron spectroscopy. The data thus obtained support the conclusion that the method described here is highly effective for the preparation of Pt-M phases featuring a range of structural and electronic modifications that will allow a useful relation to be established between their physicochemical properties and predicted electrocatalytic activity. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Canonical Monte Carlo simulations for the Au(210)/H(2)O interface, using a force field recently proposed by us, are reported. The results exhibit the main features normally observed in simulations of water molecules in contact with different noble metal surfaces. The calculations also assess the influence of the surface topography on the structural aspects of the adsorbed water and on the distribution of the water molecules in the direction normal to the metal surface plane. The adsorption process is preferential at sites in the first layer of the metal. The analysis of the density profiles and dipole moment distributions points to two predominant orientations. Most of the molecules are adsorbed with the molecular plane parallel to surface, while others adsorb with one of the O-H bonds parallel to the surface and the other bond pointing towards the bulk liquid phase. There is also evidence of hydrogen bond formation between the first and second solvent layers at the interface. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report in this work the study of the interaction between formic acid and an oxidized platinum surface under open circuit conditions. The investigation was carried out with the aid of in situ infrared spectroscopy, and results analyzed in terms of a mathematical model and numerical simulations. It has been found that during the first seconds of the interaction a small amount of CO(2) is produced and absolutely no adsorbed CO was observed. A sudden drop in potential then follows, which is accompanied by a steep increase first of CO(2) production and then by adsorbed CO. The steep transient was rationalized in terms of an autocatalytic production of free platinum sites which enhances the overall rate of reaction. Modeling and simulation showed nearly quantitative agreement with the experimental observations and provided further insight into some experimentally inaccessible variables such as surface free sites. Finally, based on the understanding provided from the combined experimental and theoretical approach, we discuss the general aspects influencing the open circuit transient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The search for more efficient anode catalyst than platinum to be used in direct alcohol fuel cell systems is an important challenge. In this study, boron-doped diamond film surfaces were modified with Pt, Pt-SnO(2) and Pt-Ta(2)O(5) nano-crystalline deposits by the sol-gel method to study the methanol and ethanol electro-oxidation reactions in acidic medium. Electrochemical experiments carried out in steady-state conditions demonstrate that the addition of SnO(2) to Pt produces a very reactive electrocatalyst that possibly adsorbs and/or dissociate ethanol more efficiently than pure Pt changing the onset potential of the reaction by 190 mV toward less positive potentials. Furthermore, the addition of Ta(2)O(5) to Pt enhances the catalytic activity toward the methanol oxidation resulting in a negative shift of the onset potential of 170 mV. These synergic effects indicate that the addition of these co-catalysts inhibits the poisoning effect caused by strongly adsorbed intermediary species. Since the SnO(2) catalyst was more efficient for ethanol oxidation, it could probably facilitate the cleavage of the C-C bond of the adsorbed intermediate fragments of the reaction. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Probe-beam deflection (PBD) was used to monitor concentration gradients of anions adjacent to the surface of a platinum electrode in acidic aqueous media containing H3PO4. PBD can measure the potential-dependent extent of adsorption of H2PO4- on the Pt electrode surface and permits the Langmuir isotherm to be fitted to the experimental data. The value thus obtained for the surface concentration was 1.3 × 10-11 mol mm -2, or 1.7 atoms of Pt per H2PO4-. Also, the electron transfer number obtained was 0.24, signifying an incomplete transfer of charge, and the equilibrium constant is 1.80 suggesting a reversible adsorption process. © 2005 Elsevier B.V. All rights reserved.