952 resultados para Platelet
Resumo:
Gastrointestinal mucositis is a common side effect of cancer chemotherapy. Platelet-activating factor (PAF) is produced during gut inflammation. There is no evidence that PAF participates in antineoplastic-induced intestinal mucositis. This study evaluated the role of PAF in 5-fluorouracil (5-FU)-induced intestinal mucositis using a pharmacological approach and PAF receptor knockout mice (PAFR(-/-)). Wild-type mice or PAFR(-/-) mice were treated with 5-FU (450 mg/kg, i.p.). Other mice were treated with saline or BN52021 (20 mg/kg, s.c.), an antagonist of the PAF receptor, once daily followed by 5-FU administration. After the third day of treatment, animals were sacrificed and tissue samples from the duodenum were removed for morphologic evaluation. In addition, myeloperoxidase activity and the cytokine concentration were measured. 5-FU treatment decreased the duodenal villus height/crypt depth ratio, increased MPO activity, and increased the concentration of TNF-alpha, IL-1 beta and KC in comparison with saline-treated animals. In PAFR(-/-) mice and PAFR antagonist-treated mice, 5-FU-dependent intestinal damage was reduced and a decrease in duodenal villus height/crypt depth ratio was attenuated. However, the 5-FU-dependent increase in duodenum MPO activity was not affected. Without PAFR activation, 5-FU treatment did not increase the TNF-alpha, IL-1 beta and KC concentration. In conclusion, our study establishes the role of PAFR activation in 5-FU-induced intestinal mucositis. This study implicates treatment with PAFR antagonists as novel therapeutic strategy for this condition.
Resumo:
Severe dengue infection in humans causes a disease characterized by thrombocytopenia, increased levels of cytokines, increased vascular permeability, hemorrhage, and shock. Treatment is supportive. Activation of platelet-activating factor (PAF) receptor (PAFR) on endothelial cells and leukocytes induces increase in vascular permeability, hypotension, and production of cytokines. We hypothesized that activation of PAFR could account for the major systemic manifestations of dengue infection. Inoculation of adult mice with an adapted strain of Dengue virus caused a systemic disease, with several features of the infection in humans. In PAFR(-/-) mice, there was decreased thrombocytopenia, hemoconcentration, decreased systemic levels of cytokines, and delay of lethality, when compared with WT infected mice. Treatment with UK-74,505, an orally active PAFR antagonist, prevented the above-mentioned manifestations, as well as hypotension and increased vascular permeability, and decreased lethality, even when started 5 days after virus inoculation. Similar results were obtained with a distinct PAFR antagonist, PCA-4246. Despite decreased disease manifestation, viral loads were similar (PAFR(-/-)) or lower (PAFR antagonist) than in WT mice. Thus, activation of PAFR plays a major role in the pathogenesis of experimental dengue infection, and its blockade prevents more severe disease manifestation after infection with no increase in systemic viral titers, suggesting that there is no interference in the ability of the murine host to deal with the infection. PAFR antagonists are disease-modifying agents in experimental dengue infection.
Resumo:
Platelet aggregation and acute inflammation are key processes in vertebrate defense to a skin injury. Recent studies uncovered the mediation of 2 serine proteases, cathepsin G and chymase, in both mechanisms. Working with a mouse model of acute inflammation, we revealed that an exogenous salivary protein of Ixodes ricinus, the vector of Lyme disease pathogens in Europe, extensively inhibits edema formation and influx of neutrophils in the inflamed tissue. We named this tick salivary gland secreted effector as I ricinus serpin-2 (IRS-2), and we show that it primarily inhibits cathepsin G and chymase, while in higher molar excess, it affects thrombin activity as well. The inhibitory specificity was explained using the crystal structure, determined at a resolution of 1.8 angstrom. Moreover, we disclosed the ability of IRS-2 to inhibit cathepsin G-induced and thrombin-induced platelet aggregation. For the first time, an ectoparasite protein is shown to exhibit such pharmacological effects and target specificity. The stringent specificity and biological activities of IRS-2 combined with the knowledge of its structure can be the basis for the development of future pharmaceutical applications. (Blood. 2011;117(2):736-744)
Resumo:
The platelet blood count in laboratorial routine provides to the clinician important information about the hemostasis of the patient. There are many techniques described, however the gold standard techniques realized in hemocytometer spent a lot of time, making this technique impracticable in great routines. This research had the intent to evaluate if the automatic veterinary blood counter QBC Vet Autoread (R), whose results get five minutes to be ready, is capable to offer a trustworthy platelet count number. To this end, were evaluated the correlations among three different forms of platelets count in dogs: count in automatic blood counter QBC Vet Autoread (R), estimative in blood smear and the gold standard method by manual count in hemocytometer. The viability and confidence use of automatic blood counters of the medicine veterinary routine. Seventeen dogs were chosen randomly way, in the medical and surgical routine of HOVET-USP. The analysis revel high correlation between the hemocytometer and the estimative in blood smear (r=0,875) and between the hemocytometer and automatic blood count by QBC Vet Autoread (R) (r=0,939). Conclude that the platelet blood cont by QBC Vet Autoread (R), in addition to be fast, it`s more truthful when compared with estimative in blood smear, although the latter one also had elevated correlation. However, morphological analysis through the smears cannot be dismissed because none of the other two techniques evaluated have the ability to assess platelet morphological changes.
Resumo:
1 Inhibition of rat platelet aggregation by the nitric oxide (NO) donor MAHMA NONOate (Z-1-{N-methyl-N-[6-(N-methylammoniohexyl)amino]}diazen-l-ium-1,2-diolate) was investigated. The aims were to compare its anti-aggregatory effect with vasorelaxation, to determine the effects of the soluble guanylate cyclase inhibitor, ODQ (1H-[1,2,4]oxadiazolo[4,3-ajquinoxalin-1-one), and to investigate the possible role of activation of sarco-encloplasmic reticulum calcium-ATPase (SERCA), independent of soluble guanylate cyclase, using thapsigargin. 2 MAHMA NONOate concentration-dependently inhibited sub-maximal aggregation responses to collagen (2 - 10 mug ml(-1)) and adenosine diphosphate (ADP; 2 mum) in platelet rich plasma. It was (i) more effective at inhibiting aggregation induced by collagen than by ADP, and (ii) less potent at inhibiting platelet aggregation than relaxing rat pulmonary artery. 3 ODQ (10 mum) caused only a small shift (approximately half a log unit) in the concentration-response curve to MAHMA NONOate irrespective of the aggregating agent. 4 The NO-independent activator of soluble guanylate cyclase, YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzy] indazole; 1 - 100 mum), did not inhibit aggregation. The cGMP analogue, 8-pCPT-cGMP (8-(4-chlorophenylthio)guanosine 3'5' cyclic monophosphate; 0.1 - 1 mm), caused minimal inhibition. 5 On collagen-aggregated platelets responses to MAHMA NONOate (ODQ 10 PM present) were abolished by thapsigargin (200 nm). On ADP-aggregated platelets thapsigargin caused partial inhibition. 6 Results with S-nitrosoglutathione (GSNO) resembled those with MAHMA NONOate. Glyceryl trinitrate and sodium nitroprusside were poor inhibitors of aggregation. 7 Thus inhibition of rat platelet aggregation by MAHMA NONOate (like GSNO) is largely ODQ-resistant and, by implication, independent of soluble guanylate cyclase. A likely mechanism of inhibition is activation of SERCA.
Resumo:
The platelet inhibitory effects of the nitric oxide (NO) donor drug MAHMA NONOate ((Z-1-{N-methyl-N-[6-(N-methylammoniohexyl)amino] diazen-1-ium-1,2-diolate) were examined in anaesthetised rats and compared with those of S-nitrosoglutathione (GSNO; an S-nitrosothiol). Bolus administration of the aggregating agent ADP dose-dependently reduced the number of circulating free platelets. Intravenous infusions of MAHMA NONOate (3-30 nmol/kg/min) dose-dependently inhibited the effect of 0.3 mumol/kg ADP. MAHMA NONOate was approximately 10-fold more potent than GSNO. MAHMA NONOate (0.3-10 nmol/kg/min) also reduced systemic artery pressure and was again 10-fold more potent than GSNO. Thus MAHMA NONOate has both platelet inhibitory and vasodepressor effects in vivo. The dose ranges for these two effects overlapped, although blood pressure was affected at slightly lower doses. The platelet inhibitory effects compared favourably with those of GSNO, even though NONOates generate free radical NO which, in theory, could have been scavenged by haemoglobin. Therefore platelet inhibition may be a useful therapeutic property of NONOates. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Platelet Concentrates (PCs) are the blood components with the highest rate of bacterial contamination, and coagulase-negative staphylococci (CoNS) are the most frequently isolated contaminants. This study investigated the biofilm formation of 16 contaminated units out of 691 PCs tested by phenotypic and genotypic methods. Adhesion in Borosilicate Tube (ABT) and Congo Red Agar (CRA) tests were used to assess the presence of biofilm. The presence of icaADC genes was assessed by means of the Polymerase Chain Reaction (PCR) technique. With Vitek(r)2, Staphylococcus haemolyticus was considered the most prevalent CoNS (31.25%). The CRA characterized 43.8% as probable biofilm producers, and for the ABT test, 37.5%. The icaADC genes were identified in seven samples by the PCR. The ABT technique showed 85.7% sensitivity and 100% specificity when compared to the reference method (PCR), and presented strong agreement (k = 0.8). This study shows that species identified as PCs contaminants are considered inhabitants of the normal skin flora and they might become important pathogens. The results also lead to the recommendation of ABT use in laboratory routine for detecting biofilm in CoNS contaminants of PCs.
Resumo:
Platelet function and plasma fibrinogen levels were evaluated in 14 patients, 10 males and 4females, aged 13-59years bitten by Bothrops genus snakes. There was a statistical difference (p < 0.05) among plasma fibrinogen levels evaluated 24 and 48 hours after envenomation. There was a tendency towards normalization after 48 hours of treatment. The low platelet number was clear in 24-48 hour evaluations with a tendency towards normalization after 48 hours of treatment (p<0.05). Fibrinogen levels and fibrin degradation product (FDP) levels appeared to be altered in 83.33% of patients evaluated. The authors suggest that platelet hypoaggregation is related to decreased fibrinogen and increased FDP levels.
Resumo:
The present measures adopted to prevent transfusion-associated Chagas' disease include screening of blood donors. and/or the inactivation of T. cruzi in collected blood using gentian violet (GV) as a trypanocidal agent. In this study, we investigated the efficacy of the combined use of AMT and UV-A in inactirating T. cruzi in infected human platelet cuncentrates. Human platelet concentrates were infected with T. cruzi (2x10/ml) of the Y strain transfered to PL 269 (Fenwal Laboratories) containers and treated with GV (250řg,/ml). and ascorbic acid (1 mg/ml); GV. ascorbic acid and UV-A; GV and UV-A; AMT (40/tG/ml) and ascorbic acid; AMT, ascorbic acid and UV-A; AMT and UV-A; UV-A alone; and untreated (control). All UV-A treated platelet concentrates were exposed to UV-A doses of 24, 92, 184, 276, 368 and 644 kj/m². and the microscopical research of active T. cruzi was performed, using the microhematocrit technique, 1, 6 and 24 hours after each treatment. A high number of active forms of T. cruzi was observed in all condictions, except when GV was used as the trypanocidal agent, providing evidence of the failure of AMT and UV-A in inactivating T cruzi in infected human platelet concentrates.
Resumo:
Introduction Thrombocytopenia is a common complication in malaria patients. The relationship between abnormal platelet profile and clinical status in malaria patients is unclear. In low and unstable endemic regions where vivax malaria predominates, the hematologic profiles of malaria patients and their clinical utility are poorly understood. The aim of this study was to characterize the thrombograms of malaria patients from Colombia, where Plasmodium vivax infection is common, and to explore the relationship between thrombograms and clinical status. Methods Eight hundred sixty-two malaria patients were enrolled, including 533 (61.8%) patients infected with Plasmodium falciparum, 311 (36.1%) patients infected with Plasmodium vivax and 18 (2.1%) patients with mixed infections. Results The most frequently observed changes were low platelet count (PC) and high platelet distribution width (PDW), which were observed in 65% of patients; thrombocytopenia with <50,000 platelets/µL was identified in 11% of patients. Patients with complications had lower PC and plateletcrit (PT) and higher PDW values. A higher risk of thrombocytopenia was identified in patients with severe anemia, neurologic complications, pulmonary complications, liver dysfunction, renal impairment and severe hypoglycemia. The presence of thrombocytopenia (<150,000 platelets/µL) was associated with a higher probability of liver dysfunction. Conclusions Young age, longer duration of illness and higher parasitemia are associated with severe thrombocytopenia. Our study showed that thrombocytopenia is related to malaria complications, especially liver dysfunction. High PDW in patients with severe malaria may explain the mechanisms of thrombocytopenia that is common in this group of patients.
Resumo:
AbstractINTRODUCTION:Hepatic fibrosis progression in patients with chronic hepatitis C virus infections has been associated with viral and host factors, including genetic polymorphisms. Human platelet antigen polymorphisms are associated with the rapid development of fibrosis in HCV-monoinfected patients. This study aimed to determine whether such an association exists in human immunodeficiency virus-1/hepatitis C virus-coinfected patients.METHODS:Genomic deoxyribonucleic acid from 36 human immunodeficiency virus-1/hepatitis C virus-coinfected patients was genotyped to determine the presence of human platelet antigens-1, -3, or -5 polymorphisms. Fibrosis progression was evaluated using the Metavir scoring system, and the patients were assigned to two groups, namely, G1 that comprised patients with F1, portal fibrosis without septa, or F2, few septa (n = 23) and G2 that comprised patients with F3, numerous septa, or F4, cirrhosis (n = 13). Fisher's exact test was utilized to determine possible associations between the human platelet antigen polymorphisms and fibrosis progression.RESULTS:There were no deviations from the Hardy-Weinberg equilibrium in the human platelet antigen systems evaluated. Statistically significant differences were not observed between G1 and G2 with respect to the distributions of the allelic and genotypic frequencies of the human platelet antigen systems.CONCLUSION:The greater stimulation of hepatic stellate cells by the human immunodeficiency virus and, consequently, the increased expression of transforming growth factor beta can offset the effect of human platelet antigen polymorphism on the progression of fibrosis in patients coinfected with the human immunodeficiency virus-1 and the hepatitis C virus.
Resumo:
In the present study, different aerial parts from twelve Amazonian plant species found in the National Institute for Amazon Research's (INPA's) Adolpho Ducke Forest Reserve (in Manaus, Amazonas, Brazil) were collected. Separate portions of dried, ground plant materials were extracted with water (by infusion), methanol and chloroform (by continuous liquid-solid extraction) and solvents were removed first by rotary evaporation, and finally by freeze-drying which yielded a total of seventy-one freeze-dried extracts for evaluation. These extracts were evaluated initially at concentrations of 500 and 100 µg/mL for in vitro hemolytic activity and in vitro inhibition of platelet aggregation in human blood, respectively. Sixteen extracts (23 % of all extracts tested, 42 % of all plant species), representing the following plants: Chaunochiton kappleri (Olacaceae), Diclinanona calycina (Annonaceae), Paypayrola grandiflora (Violaceae), Pleurisanthes parviflora (Icacinaceae), Sarcaulus brasiliensis (Sapotaceae), exhibited significant inhibitory activity towards human platelet aggregation. A group of extracts with antiplatelet aggregation activity having no in vitro hemolytic activity has therefore been identified. Three extracts (4 %), all derived from Elaeoluma nuda (Sapotaceae), exhibited hemolytic activity. None of the plant species in this study has known use in traditional medicine. So, these data serve as a baseline or minimum of antiplatelet and hemolytic activities (and potential usefulness) of non-medicinal plants from the Amazon forest. Finally, in general, these are the first data on hemolytic and inhibitory activity on platelet aggregation for the genera which these plant species represent.
Resumo:
Human platelet lysate (PL) is a cost-effective and human source of autologous multiple and potent pro-angiogenic factors, such as vascular endothelial growth factor A (VEGF A), fibroblast growth factor b (FGF b) and angiopoietin-1. Nanocoatings previously characterized were prepared by layer-by-layer assembling incorporating PL with marine-origin polysaccharides and were shown to activate human umbilical vein endothelial cells (HUVECs). Within 20 h of incubation, the more sulfated coatings induced the HUVECS to the form tube-like structures accompanied by an increased expression of angiogenicassociated genes, such as angiopoietin-1 and VEGF A. This may be a cost-effective approach to modify 2D/3D constructs to instruct angiogenic cells towards the formation of neo-vascularization, driven by multiple and synergistic stimulations from the PL combined with sulfated polysaccharides. Statement of Significance The presence, or fast induction, of a stable and mature vasculature inside 3D constructs is crucial for new tissue formation and its viability. This has been one of the major tissue engineering challenges, limiting the dimensions of efficient tissue constructs. Many approaches based on cells, growth factors, 3D bioprinting and channel incorporation have been proposed. Herein, we explored a versatile technique, layer-by-layer assembling in combination with platelet lysate (PL), that is a cost-effective source of many potent pro-angiogenic proteins and growth factors. Results suggest that the combination of PL with sulfated polyelectrolytes might be used to introduce interfaces onto 2D/3D constructs with potential to induce the formation of cell-based tubular structures.