878 resultados para Plastic tunnel
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A cultura da alface é extremamente exigente em água, sendo bastante recomendável a utilização de irrigação por gotejamento, pois neste método é mais fácil se controlar o teor de água no solo próximo a capacidade de campo. Com a evolução das características hidráulicas dos emissores, vem se intensificando cada vez mais o uso do gotejamento abaixo da superfície do solo (gotejamento subsuperficial), com a alegação de se obter algumas vantagens sobre a forma tradicional (gotejamento superficial), como por exemplo a possibilidade de maior vida útil do equipamento e maior eficiência de uso da água. Almejando esta segunda possibilidade, buscou-se no presente trabalho comparar parâmetros de produtividade da cultura da alface submetida a diferentes lâminas de irrigação através de gotejamento superficial e subsuperficial. A alface foi cultivada em um túnel alto, na Fazenda Experimental São Manuel, da Faculdade Ciências Agronômicas, Universidade Estadual Paulista, Campus de Botucatu, localizada no município de São Manuel. Instalou-se no centro do túnel um tanque Classe A que serviu de base para reposição das lâminas de irrigação. Estas lâminas foram equivalentes a 25%, 50%, 75% e 100% da evaporação do tanque Classe A no intervalo entre duas irrigações, que foi igual a três dias. Entre os parâmetros estudados, as duas menores lâminas de irrigação (25% e 50%) responderam melhor ao gotejamento subsuperficial. Os melhores resultados obtidos, tanto no gotejamento superficial como no subsuperficial, se deu através do manejo que utilizou uma reposição de lâmina igual a 100% da evaporação do tanque Classe A.
Simply a nest? Effects of different enrichments on stereotypic and anxiety-related behaviour in mice
Resumo:
Improving the home cages of laboratory mice by environmental enrichment has been widely used to reduce cage stereotypies and anxiety-related behaviour in behavioural tests. However, enrichment studies differ substantially in type, complexity and variation of enrichments. Therefore, it is unclear whether success depends on specific enrichment items, environmental complexity, or novelty associated with enrichment. The aim of this study was therefore to dissociate the effects of environmental complexity and novelty on stereotypy development and compare these effects with the provision of nesting material alone. Thus, 54 freshly weaned male ICR (CD-1) mice were pairwise allocated to standard laboratory cages enriched in three different ways (n = 18 per group). Treatment 1 consisted of cotton wool as nesting material. Treatments 2 and 3 were structurally more complex, including a shelter and a climbing structure as additional resources. To render complexity and novelty independent of the specific enrichment items, three shelters (cardboard house, plastic tunnel, red plastic house) and three climbing structures (ladder, rope, wooden bars) were used to create nine different combinations of enrichment. In treatment 2 (complexity), each pair of mice was assigned to a different combination that remained constant throughout 9 weeks, whereas in treatment 3 (novelty), each pair of mice was exposed to all 9 combinations in turn by changing them weekly in a pseudorandom order. After 9 weeks, stereotypic behaviour in the home cage was assessed from video recordings, and anxiety-related behaviour was assessed in two behavioural tests (elevated zero-maze, open-field). However, no significant differences in stereotypy scores and no consistent differences in anxiety-related behaviours were found between the three groups. These findings indicate that within standard laboratory cages neither complexity nor novelty of simple enrichments have additional effects on stereotypic and anxiety-related behaviour beyond those of adequate nesting material. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Results from elasto-plastic numerical simulations of jointed rocks using both the equivalent continuum and discrete continuum approaches are presented, and are compared with experimental measurements. Initially triaxial compression tests on different types of rocks with wide variation in the uniaxial compressive strength are simulated using both the approaches and the results are compared. The applicability and relative merits and limitations of both the approaches for the simulation of jointed rocks are discussed. It is observed that both the approaches are reasonably good in predicting the real response. However, the equivalent continuum approach has predicted somewhat higher stiffness values at low strains. Considering the modelling effort involved in case of discrete continuum approach, for problems with complex geometry, it is suggested that a proper equivalent continuum model can be used, without compromising much on the accuracy of the results. Then the numerical analysis of a tunnel in Japan is taken up using the continuum approach. The deformations predicted are compared well against the field measurements and the predictions from discontinuum analysis. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
By using the lower-bound finite element limit analysis, the stability of a long unsupported circular tunnel has been examined with an inclusion of seismic body forces. The numerical results have been presented in terms of a non-dimensional stability number (gamma H/c) which is plotted as a function of horizontal seismic earth pressure coefficient (k (h)) for different combinations of H/D and I center dot; where (1) H is the depth of the crest of the tunnel from ground surface, (2) D is the diameter of the tunnel, (3) k (h) is the earthquake acceleration coefficient and (4) gamma, c and I center dot define unit weight, cohesion and internal friction angle of soil mass, respectively. The stability numbers have been found to decrease continuously with an increase in k (h). With an inclusion of k (h), the plastic zone around the periphery of the tunnel becomes asymmetric. As compared to the results reported in the literature, the present analysis provides a little lower estimate of the stability numbers. The numerical results obtained would be useful for examining the stability of unsupported tunnel under seismic forces.
Resumo:
The stability of a long circular tunnel in a cohesive frictional soil medium has been determined in the presence of horizontal pseudo-static seismic body forces. The tunnel is supported by means of lining and anchorage system which is assumed to exert uniform internal compressive normal pressure on its periphery. The upper bound finite element limit analysis has been performed to compute the magnitude of the internal compressive pressure required to support the tunnel. The results have been presented in terms of normalized compressive normal stress, defined in terms of sigma(i)/c; where sigma(i) is the magnitude of the compressive normal pressure on the periphery of the tunnel and c refers to soil cohesion. The variation of sigma(i)/c with horizontal earthquake acceleration coefficient (alpha(h)) has been established for different combinations of H/D, gamma D/c and phi where (i) H and D refers to tunnel cover and diameter, respectively, and (ii) gamma and phi correspond to unit weight and internal friction angle of soil mass, respectively. Nodal velocity patterns have also been plotted for assessing the zones of significant plastic deformation. The analysis clearly reveals that an increase in the magnitude of the earthquake acceleration leads to a significant increment in the magnitude of internal compressive pressure. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
High tunnels are simple, plastic-covered, passive solar-heated structures in which crops are grown in the ground. They are used by fruit and vegetable growers to extend the growing season and intensify production in cold climates. The covered growing area creates a desert-like environment requiring carefully monitored irrigation practices. In contrast, the exterior expanse of a high tunnel generates a large volume of water with every measurable rainfall. Each 1,000 ft of high tunnel roof will generate approximately 300 gallons from a half inch of rain. Unless the high tunnel site is elevated from the surrounding area or drainage tiles installed, or other drainage accommodations are made around the perimeter, the soil along the inside edge of the high tunnel is nearly continuously saturated. High volumes of water can also create an erosion problem. The objective of this project was to design and construct a system that enables growers using high tunnels in their production operation to reduce drainage problems, erosion, and crop loss due to excess moisture in and around their high tunnel(s) without permanent environmental and soil mediations.
Resumo:
High tunnels have been successfully used in Iowa to modify the climate and extend the growing season for tomatoes and other crops. Without the use of supplemental heat these ventilated, single layered plastic structures have typically increased average inside air temperatures by 10°F or more over outside temperatures for the growing season. The same tunnel, however, will only increase the daily low temperature by about 1 or 2°F, thus making early season high tunnel plantings without additional heat or plant coverings risky in Iowa. Fabric row covers are commonly used in high tunnels to provide for an additional 2-4°F frost protection during cold evenings. The recommended planting date for high tunnel tomatoes in Iowa has been about April 16 (4 to 5 weeks ahead of the recommended outside planting date). Producers are also advised to have some sort of plant covering material available to protect plants during a late spring frost.
Resumo:
Far-field stresses are those present in a volume of rock prior to excavations being created. Estimates of the orientation and magnitude of far-field stresses, often used in mine design, are generally obtained by single-point measurements of stress, or large-scale, regional trends. Point measurements can be a poor representation of far-field stresses as a result of excavation-induced stresses and geological structures. For these reasons, far-field stress estimates can be associated with high levels of uncertainty. The purpose of this thesis is to investigate the practical feasibility, applications, and limitations of calibrating far-field stress estimates through tunnel deformation measurements captured using LiDAR imaging. A method that estimates the orientation and magnitude of excavation-induced principal stress changes through back-analysis of deformation measurements from LiDAR imaged tunnels was developed and tested using synthetic data. If excavation-induced stress change orientations and magnitudes can be accurately estimated, they can be used in the calibration of far-field stress input to numerical models. LiDAR point clouds have been proven to have a number of underground applications, thus it is desired to explore their use in numerical model calibration. The back-analysis method is founded on the superposition of stresses and requires a two-dimensional numerical model of the deforming tunnel. Principal stress changes of known orientation and magnitude are applied to the model to create calibration curves. Estimation can then be performed by minimizing squared differences between the measured tunnel and sets of calibration curve deformations. In addition to the back-analysis estimation method, a procedure consisting of previously existing techniques to measure tunnel deformation using LiDAR imaging was documented. Under ideal conditions, the back-analysis method estimated principal stress change orientations within ±5° and magnitudes within ±2 MPa. Results were comparable for four different tunnel profile shapes. Preliminary testing using plastic deformation, a rough tunnel profile, and profile occlusions suggests that the method can work under more realistic conditions. The results from this thesis set the groundwork for the continued development of a new, inexpensive, and efficient far-field stress estimate calibration method.
Resumo:
Far-field stresses are those present in a volume of rock prior to excavations being created. Estimates of the orientation and magnitude of far-field stresses, often used in mine design, are generally obtained by single-point measurements of stress, or large-scale, regional trends. Point measurements can be a poor representation of far-field stresses as a result of excavation-induced stresses and geological structures. For these reasons, far-field stress estimates can be associated with high levels of uncertainty. The purpose of this thesis is to investigate the practical feasibility, applications, and limitations of calibrating far-field stress estimates through tunnel deformation measurements captured using LiDAR imaging. A method that estimates the orientation and magnitude of excavation-induced principal stress changes through back-analysis of deformation measurements from LiDAR imaged tunnels was developed and tested using synthetic data. If excavation-induced stress change orientations and magnitudes can be accurately estimated, they can be used in the calibration of far-field stress input to numerical models. LiDAR point clouds have been proven to have a number of underground applications, thus it is desired to explore their use in numerical model calibration. The back-analysis method is founded on the superposition of stresses and requires a two-dimensional numerical model of the deforming tunnel. Principal stress changes of known orientation and magnitude are applied to the model to create calibration curves. Estimation can then be performed by minimizing squared differences between the measured tunnel and sets of calibration curve deformations. In addition to the back-analysis estimation method, a procedure consisting of previously existing techniques to measure tunnel deformation using LiDAR imaging was documented. Under ideal conditions, the back-analysis method estimated principal stress change orientations within ±5° and magnitudes within ±2 MPa. Results were comparable for four different tunnel profile shapes. Preliminary testing using plastic deformation, a rough tunnel profile, and profile occlusions suggests that the method can work under more realistic conditions. The results from this thesis set the groundwork for the continued development of a new, inexpensive, and efficient far-field stress estimate calibration method.
Resumo:
The emission factors of a bus fleet consisting of approximately three hundreds diesel powered buses were measured in a tunnel study under well controlled conditions during a two-day monitoring campaign in Brisbane. The number concentration of particles in the size range 0.017-0.7 m was monitored simultaneously by two Scanning Mobility Particle Sizers located at the tunnel’s entrance and exit. The mean value of the number emission factors was found to be (2.44±1.41)×1014 particles km-1. The results are in good agreement with the emission factors determined from steady-state dynamometer testing of 12 buses from the same Brisbane City bus fleet, thus indicating that when carefully designed, both approaches, the dynamometer and on-road studies, can provide comparable results, applicable for the assessment of the effect of traffic emissions on airborne particle pollution.