940 resultados para Plants, Ornamental
Resumo:
Mode of access: Internet.
Resumo:
Description based on: No. 12 (Jan. 1916); title from caption.
Resumo:
ptie. 1. Renonculacées a légumineuses.--ptie. 2. Térébintaacees a graminées.
Resumo:
Includes indexes.
Resumo:
Subtitle varies slightly.
Resumo:
2009
Resumo:
Mediterranean species are popular landscape plants in the UK and well suited to the predicted climate change scenarios of hotter, drier summers. What is less clear is how these species will respond to the more unpredictable rainfall patterns also anticipated, where soil water-logging may become more prevalent, especially in urban environments where soil sealing can restrict drainage. Pot experiments on flooding of four Mediterranean species (Cistus × hybridus, Lavandula angustifolia ‘Munstead’, Salvia officinalis and Stachys byzantina) showed that the effects of waterlogging were only severe when the temperature was high and flooding prolonged. All plants survived the flooding in winter, but during the summer a 17-day flood resulted in the death of 30-40% of the Salvia officinalis and Cistus × hybridus. To examine the response of roots to oxygen deprivation over a range of conditions from total absence of oxygen (anoxia), low oxygen (hypoxia) and full aeration, rooted cuttings of Salvia officinalis were grown in a hydroponic-based system and mixtures of oxygen and nitrogen gases bubbled through the media. Anoxia was found to reduce root development dramatically. When the plants were subjected to a period of hypoxia they responded by increasing the production of lateral roots close to the surface thus enabling them to acclimate to subsequent anoxia. This greatly increased their chances of survival.
Resumo:
The plant-parasitic nematodes are responsible for serious injuries in roots and shoots of ornamental plants, reducing its beauty and consequently its economic value. This study aimed to ascertain the occurrence and distribution of plantparasitic nematodes through the analysis of the roots of ornamental and flowering plants at UNESP FCAV's landscape. The roots were collected from fifteen different species as follows: Anthurium andreannum, Rhododendron simsii, Impatiens walleriana, Calathea stromata, Cordyline terminalis, Dieffenbachia picta, Dracaena marginata, Ficus benjamina, Spathiphyllum ortgiesii 'Sensation', Spathiphyllum wallisi 'American Beauty' and 'Mini', Odontonema strictum, Portulaca grandiflora, Strelitzia reginae, Tradescantia zebrina and Tradescantia pallida. Samples of roots were processed. The plant-parasitic nematodes identified in the samples were: Meloidogyne sp. (Anthurium andreannum, Calathea stromata, Dieffenbachia picta, Ficus benjamina, Impatiens walleriana, Odontonema strictum, Portulaca grandiflora, Spathiphyllum ortgiesii 'Sensation'), Helicotylenchus dihystera (Calathea stromata, Dracaena marginata, Portulaca grandiflora, Spathiphyllum ortgiessi 'Sensation', Tradescantia pallida, Tradescantia zebrina), Tylenchus sp. (Anthurium andreannum, Calathea stromata, Cordyline terminalis, Dieffenbachia picta, Ficus benjamina, Rhododendron simsii), Aphelenchoides sp. (Dieffenbachia picta, Spathiphyllum ortgiesii 'Sensation', S. wallisi 'American Beauty'), Rotylenchulus reniformis (Cordyline terminalis, Dracaena marginata, Odontonema strictum), Pratylenchus sp. (Spathiphyllum ortgiesii 'Sensation', Spathiphyllum wallisi 'Mini'), Ditylenchus sp. (Spathiphyllum wallisi 'Mini'), Pratylenchus brachyurus (Tradescantia zebrina). The plant-parasitic nematodes weren't found in the roots of Strelitzia reginae.
Resumo:
The red palm mite, Raoiella indica Hirst, has been primarily found associated with coconut and musaceous plants in the New World. However, it has also been recorded on several other palms, heliconiaceous and zingiberaceous species. This study was conducted to evaluate the suitability of different botanical families on which R. indica has been collected in the field and of arecaceous plants of the natural vegetation of the neotropics. In total, ten species of Arecaceae as well as Heliconia psittacorum [Heliconiaceae] and Alpinia purpurata [Zingiberacae] were evaluated, using coconut as a control. The study was carried out under controlled conditions (29 +/- A 0.5 A degrees C, 60 +/- A 10 % RH and photoperiod 12 h of light). Raoiella indica was able to complete immature development only on coconut, Adonidia merrillii, Ptychosperma macarthurii, H. psittacorum and A. purpurata. Duration of the immature phase (egg-adult) ranged between 21.5 days on coconut to 34.1 days on A. purpurata. Longevity was at least 50 % greater and oviposition at least 38 % higher on coconut than on other plants. Intrinsic rate of increase (r(m)) was higher on coconut (0.166) and A. merrillii (0.042), but negative on the other two plant species. Raoiella indica could not reach adulthood on any of the other ten arecaceous species considered in the study. The results suggested R. indica to be a threat to A. merrillii in addition to coconut, but not to other evaluated plants. However, complementary studies should be conducted to investigate whether the experimental procedures adopted in this study could not have prevented the mite from a better performance than it could have been under field conditions, especially in relation to Mauritia flexuosa, one of the dominant arecaceous plants in South America.
Resumo:
When deer populations become locally overabundant, browsing of ornamental and agronomic plants negatively affects plant establishment, survival, and productivity. Milorganite® is a slow-release, organic fertilizer produced from human sewage. We tested Milorganite® as a deer repellent on chrysanthemums (Chrysanthemums morifolium) in an urban/suburban environment, and soybeans (Gycine max) in a rural agriculture environment. Six beds of chrysanthemums at two sites were monitored for 28 to 35 days. Treatment plants received a top dressing of 104 grams of Milorganite® (1120.9 kg/ha). Milorganite® treated plants had more (P < 0.001) terminal buds and achieved greater height (P < 0.002) compared to controls at one site, however damage observed was similar at the second site. In a second experiment, 0.2-ha plots of soybeans (Glycine max) were planted on five rural properties in northeastern Georgia and monitored for ≥ 30 days. Treated areas received 269 kg/ha of Milorganite®. In 4 of 5 sites, Milorganite® delayed browsing on treated plants from 1 week to > 5 weeks post-planting. Duration of the protection appeared to be related to the difference in deer density throughout most of the study areas. Results of this study indicate Milorganite® has potential use as a deer repellent.
Resumo:
Includes index.
Resumo:
Issued originally as Entomological series, circular 12.