998 resultados para Plant succession


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The island of Mauritius offers the opportunity to study the poorly understood vegetation response to climate change on a small tropical oceanic island. A high-resolution pollen record from a 10 m long peat core from Kanaka Crater (560 m elevation, Mauritius, Indian Ocean) shows that vegetation shifted from a stable open wet forest Last Glacial state to a stable closed-stratified-tall-forest Holocene state. An ecological threshold was crossed at ∼11.5 cal ka BP, propelling the forest ecosystem into an unstable period lasting ∼4000 years. The shift between the two steady states involves a cascade of four abrupt (<150 years) forest transitions in which different tree species dominated the vegetation for a quasi-stable period of respectively ∼1900, ∼1100 and ∼900 years. We interpret the first forest transition as climate-driven, reflecting the response of a small low topography oceanic island where significant spatial biome migration is impossible. The three subsequent forest transitions are not evidently linked to climate events, and are suggested to be driven by internal forest dynamics. The cascade of four consecutive events of species turnover occurred at a remarkably fast rate compared to changes during the preceding and following periods, and might therefore be considered as a composite tipping point in the ecosystem. We hypothesize that wet gallery forest, spatially and temporally stabilized by the drainage system, served as a long lasting reservoir of biodiversity and facilitated a rapid exchange of species with the montane forests to allow for a rapid cascade of plant associations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. Changes in the frequency of extreme events, such as droughts, may be one of the most significant impacts of climate change for ecosystems. Models predict more frequent summer droughts in much of England: this paper investigates the impact on different types of plants in an ex-arable grassland community. 2. A long-term experiment simulated increased and decreased summer precipitation. Substantial interannual variation allowed the effects of summer drought to be tested in combination with wet and dry weather in other seasons. This is important, as climate models predict increased winter precipitation. 3. Total cover abundance in early summer increased with increasing water supply in the previous summer; there was no effect of winter precipitation. Productivity is therefore likely to decrease with more frequent summer droughts, with no mitigating effect of wetter winters. 4. The percentage cover of perennial grasses declined during a natural drought in 1995-97; this was exacerbated by the experimental drought treatment and reduced by supplemented rainfall. Simultaneously, short-lived ruderal species increased; this was greatest in drought treatments and least with supplemented rainfall. 4. These trends were subsequently reversed during several years of unusually wet weather, with perennial grasses increasing and short-lived forbs decreasing. This occurred even in experimentally droughted plots, and we propose that it resulted from rapid coverage of gaps during wet autumns and winters. 6. Deep-rooted species generally proved to be more drought resistant, but there were exceptions. 7. We conclude that increased frequency of summer droughts could have serious implications for the establishment and successional development of ex-arable grasslands. Increased winter precipitation would moderate the impact on species composition, but not on productivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DISTRIBUTION OF NITROGEN AMMONIUM SULFATE (N-15) SOIL-PLANT SYSTEM IN A NO-TILLAGE CROP SUCCESSION The N use by maize (Zea mays, L.) is affected by N-fertilizer levels. This study was conducted using a sandy-clay texture soil (Hapludox) to evaluate the efficiency of N use by maize in a crop succession, based on N-15-labeled ammonium sulfate (5.5 atom %) at different rates, and to assess the residual fertilizer effect in two no-tillage succession crops (signalgrass and corn). Two maize crops were evaluated, the first in the growing season 2006, the second in 2007, and brachiaria in the second growing season. The treatments consisted of N rates of 60, 120 and 180 kg ha(-1) in the form of labeled N-15 ammonium sulfate. This fertilizer was applied in previously defined subplots, only to the first maize crop (growing season 2006). The variables total accumulated N; fertilizer-derived N in corn plants and pasture; fertilizer-derived N in the soil; and recovery of fertilizer-N by plants and soil were evaluated. The highest uptake of fertilizer N by corn was observed after application of 120 kg ha(-1) N and the residual effect of N fertilizer on subsequent corn and Brachiaria was highest after application of 180 kg ha(-1) N. After the crop succession, soil N recovery was 32, 23 and 27 % for the respective applications of 60, 120 and 180 kg ha(-1) N.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microbiotic crust study is among new focuses in investigating on the desertification control. Based on determination of algal crusts with different successive ages (4-, 8-, 17-, 34-, 42-year-old) and unconsolidated sand in the desert area, species composition and clustering analyses were carried out in this study. Results on successional orientation revealed that (1) the abundance of Cyanophyta, specially of Scytonema javanicum gradually decreased; (2) the abundance of Chlorophyta, Bacillariophyta and a species of Cyanophyta, Phormidium tenue increased; (3) the biodiversity increased gradually with the community succession; and (4) biomass of microalgae increased at the early stage, but decreased at the later stage due to the abundance of lichens and mosses. But, the speed of natural succession was so slow that the community-building species was still the first dominant species after 42 years, except that its dominant degree decreased just slightly. However, successive speed and trend were affected by water, vegetation coverage, terrain, time and soil physico-chemical properties as well, especially Mn content in the soil appeared to have a threshold effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grassland degradation is widespread and severe on the Tibet Plateau. To explore management approaches for sustainable development of degraded and restored ecosystems, we studied the effect of land degradation on species composition, species diversity, and vegetation productivity, and examined the relative influence of various rehabilitation practices (two seeding treatments and a non-seeded natural recovery treatment) on community structure and vegetation productivity in early secondary succession. The results showed: (1) All sedge and grass species of the natural steppe meadow had disappeared from the severely degraded land. The above-ground and root biomass of severely degraded land were only 38 and 14.7%, respectively, of those of the control. So, the original ecosystem has been dramatically altered by land degradation on alpine steppe meadow. (2) Seeding measures may promote above-ground biomass, particularly grass biomass, and ground cover. Except for the grasses seeded, however, other grass and sedge species did not occur after seeding treatments in the sixth year of seeding. Establishment of grasses during natural recovery treatment progressed slowly compared with during seeding treatments. Many annual forbs invaded and established during the 6 years of natural recovery. In addition, there was greater diversity after natural recovery treatment than after seeding treatments. (3) The above-ground biomass after seeding treatment and natural recovery treatment were 114 and 55%, respectively, of that of the control. No significant differences in root biomass occurred among the natural recovery and seeded treatments. Root biomass after rehabilitation treatment was 23-31% that of the control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between plant species diversity, productivity and the development of the soil community during early secondary succession on former arable land across Europe is investigated. The enhancement of biomass production due to the increase in initial plant species diversity and the consequent stimulation of soil microbial biomass and abundance of soil invertebrates are examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questions: How is succession on ex-arable land affected by sowing high and low diversity mixtures of grassland species as compared to natural succession? How long do effects persist? Location: Experimental plots installed in the Czech Republic, The Netherlands, Spain, Sweden and the United Kingdom. Methods: The experiment was established on ex-arable land, with five blocks, each containing three 10 m x 10 m experiment tal plots: natural colonization, a low- (four species) and high-diversity (15 species) seed mixture. Species composition and biomass was followed for eight years. Results: The sown plants considerably affected the whole successional pathway and the effects persisted during the whole eight year period. Whilst the proportion of sown species (characterized by their cover) increased during the study period, the number of sown species started to decrease from the third season onwards. Sowing caused suppression of natural colonizing species, and the sown plots had more biomass. These effects were on average larger in the high diversity mixtures. However, the low diversity replicate sown with the mixture that produced the largest biomass or largest suppression of natural colonizers fell within the range recorded at the five replicates of the high diversity plots. The natural colonization plots usually had the highest total species richness and lowest productivity at the end of the observation period. Conclusions: The effect of sowing demonstrated dispersal limitation as a factor controlling the rate of early secondary succession. Diversity was important primarily for its 'insurance effect': the high diversity mixtures were always able to compensate for the failure of some species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flood-plain meadows (Alopecurus-Sanguisorba grassland) are a floristically rich community of conservation importance throughout Europe. Declines in their distribution due in part to modern farming practices mean they now cover less than 1500 ha in the UK. To investigate the effect of grazing regime during the re-creation of this grassland type, target plant species were sown onto ex-arable land during 1985. Traditional management, based on a July hay cut followed by aftermath grazing was subsequently instigated, and the site was divided into replicated grazing regimes of cattle, sheep and an un-grazed control. Plant and beetle assemblages were sampled and compared to those of target flood-plain meadows and improved grassland communities. Within the re-creation treatments the absence of aftermath grazing reduced beetle abundances and species richness. Assemblages of plants were closest to that of the target flood-plain meadow under sheep grazing, although this differed little from cattle grazing. Beetle species assemblages and functional group structure were, however, closest to the target grassland under cattle grazing. For all taxa the greatest resilience to succession to the target flood-plain meadow occurred when grazing was not part of the management prescription. Although successful re-creation had not been achieved for either the plants or beetles, cutting followed by aftermath cattle grazing has provided the best management to date. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Atlantic Rain Forest, an important biodiversity hot spot, has faced severe habitat loss since the last century which has resulted in a highly fragmented landscape with a large number of small forest patches (<100 ha). For conservation planning it is essential to understand how current and future forest regeneration depends on ecological processes, fragment size and the connection to the regional seed pool. We have investigated the following questions by applying the forest growth simulation model FORMIND to the situation of the Atlantic Forest in the state of Sao Paulo, SE Brazil: (1) which set of parameters describing the local regeneration and level of density regulation can reproduce the biomass distribution and stem density of an old growth forest in a reserve? (2) Which additional processes apart from those describing the dynamics of an old growth forest, drive forest succession of small isolated fragments? (3) Which role does external seed input play during succession? Therefore, more than 300 tree species have been classified into nine plant functional types (PFTs), which are characterized by maximum potential height and shade tolerance. We differentiate between two seed dispersal modes: (i) local dispersal, i.e. all seedlings originated from fertile trees within the simulated area and (ii) external seed rain. Local seed dispersal has been parameterized following the pattern oriented approach, using biomass estimates of old growth forest. We have found that moderate density regulation is essential to achieve coexistence for a broad range of regeneration parameters. Considering the expected uncertainty and variability in the regeneration processes it is important that the forest dynamics are robust to variations in the regeneration parameters. Furthermore, edge effects such as increased mortality at the border and external seed rain have been necessary to reproduce the patterns for small isolated fragments. Overall, simulated biomass is much lower in the fragments compared to the continuous forest, whereas shade tolerant species are affected most strongly by fragmentation. Our simulations can supplement empirical studies by extrapolating local knowledge on edge effects of fragments to larger temporal and spatial scales. In particular our results show the importance of external seed rain and therefore highlight the importance of structural connectivity between regenerating fragments and mature forest stands. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is involved with changes that have occurred to small mammal populations following a major disturbance in the Anglesea region as a result of the 1983 Ash Wednesday fires. Fire, with its effects on spatial and temporal heterogeneity, was found to be an important factor in the maintenance of vegetation and small mammal community structure and diversity in the region. Successional changes in vegetation and small mammal communities were described by multivariate analyses, using data collected annually from 22 study sites. The use of factor analysis techniques, in reducing the annual capture data content, enabled long-term changes in the structure of mammal communities to be interpreted. The small mammal communities in the coastal heath and forest vegetation in the Anglesea region show evidence of a general resilience, (the degree and speed of recovery), to disturbance. Two phases of successional response to fire by mammal species have been proposed; a ‘re-establishment’ phase which occurs in the initial 5-6 years post-fire and is accompanied by rapid increase in species’ abundance, and a subsequent ‘maintenance’ phase accompanied by relatively minor changes in abundance. Habitat Suitability Indices were produced relating to these phases. Vertical density measures of understorey shrubs and herb layers showed significant relationships with small mammal species abundance at the study sites. Long term studies following major disturbances are needed to distinguish between short term recovery of plant and animal species and long term changes in these species. Studies extending over a number of years enable a better directional view of changes in small mammal communities than can be determined from . observations made over a short period. As a part of the investigation into temporal change, it was proposed to undertake trial reintroductions of the Swamp antechinus, Ant echinus minimus, a marsupial dasyurid species which was trapped in the area prior to the 1983 fire, but rarely subsequently. Other more commonly observed native small mammal species (e.g. Rattus fuscipes,R. lutreolus, Antechinus stuartii, Sminthopsis leucopus) had re-invaded the proposed reintroduction site after this fire. Failure of A. minimus to re-establish may have been due to spatial separation of the pre-fire populations coupled with the extensive area burnt in 1983, A source population of the species was located about 100km to the west and habitat utilization and interspecific and niche relationships between the species making the small mammal community explored. Discriminant analysis revealed some spatial separation of species within a habitat based on structural vegetation factors rather than floristic factors. Temporal separation of species was observed, asA. minimus were more active than Rattus species during daylight periods. There was evidence of micro-habitat selection by species, and structural vegetation factors were most commonly identified in statistical analyses as contributing towards selection by small mammal species. Following a theoretical modelling study three reintroduction trials were carried out near Anglesea during 1992-94. Individuals were subsequently radio tracked, and habitat relationships between the species in the small mammal community investigated. Although successful breeding of A, minimus occurred during the latter two trials, the subsequent fate of offspring was not determined. Invasive techniques required to adequately monitor young animals were considered potentially too damaging. Telemetry studies indicated a preference of A. minimus for short, wet heath vegetation. Structural vegetation factors were identified as being significant in discriminating between capture locations of species. Small scale and inexpensive trial reintroductions have yielded valuable additional data on this species and may be viewed as a useful tool in the conservation of other small native mammals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding tropical forest succession is critical for the development of tropical forest conservation strategies worldwide, given that tropical secondary forests can be considered the forests of the future. Tropical dry forests (TDF) are among the most threatened tropical ecosystems, there are more secondary forests and forest restoration efforts that require a better understanding of successional processes. The main goal of this synthesis for this special issue on the ecology and management of tropical dry forests in the Americas is to present a summarized review of the current knowledge of the ecology and management implications associated to TDF succession. We explore specific issues associated to tropical dry forest succession with emphasis on the use of chronosequences, plant diversity and composition, plant phenology and remote sensing, pollination, and animal-plant interactions; all under the integrating umbrella of ecosystem succession. We also emphasize the need to conduct socio-ecological research to understand changes in land-use history and its effects on succession and forest regeneration of TDF. We close this paper with some thoughts and ideas associated with the strong need for an integrating dimension not considered until today: the role of cyberinfrastructure and eco-informatics as a tool to support sound conservation, management and understanding of TDF in the Americas. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exotic species are used to trigger facilitation in restoration plantings, but this positive effect may not be permanent and these species may have negative effects later on. Since such species can provide a marketable product (firewood), their harvest may represent an advantageous strategy to achieve both ecological and economic benefits. In this study, we looked at the effect of removal of a non-native tree species (Mimosa caesalpiniifolia) on the understory of a semideciduous forest undergoing restoration. We assessed two 14-year-old plantation systems (modified taungya agroforestry system; and mixed plantation using commercial timber and firewood tree species) established at two sites with contrasting soil properties in São Paulo state, Brazil. The experimental design included randomized blocks with split plots. The natural regeneration of woody species (height ≥0.2 m) was compared between managed (all M. caesalpiniifolia trees removed) and unmanaged plots during the first year after the intervention. The removal of M. caesalpiniifolia increased species diversity but decreased stand basal area. Nevertheless, the basal area loss was recovered after 1 year. The management treatment affected tree species regeneration differently between species groups. The results of this study suggest that removal of M. caesalpiniifolia benefited the understory and possibly accelerated the succession process. Further monitoring studies are needed to evaluate the longer term effects on stand structure and composition. The lack of negative effects of tree removal on the natural regeneration indicates that such interventions can be recommended, especially considering the expectations of economic revenues from tree harvesting in restoration plantings.