1000 resultados para Plant mites
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Eighteen predatory mite species of the family Phytoseiidae are reported from three sites of the Cerrado ecosystem in the State of São Paulo, southeastern Brazil, on seven plant species of the family Myrtaceae. This paper provides a list of those species and compares relevant morphological characteristics of the specimens collected with those of the original descriptions and/or redescriptions of the corresponding species. A key is provided to help in the separation of the species mentioned in the paper. Some of the species collected have been reported as common predators on dominant crops in the region where the work was done. Their occurrence on Myrtaceae plants found naturally in the Cerrado ecosystem indicates that those plants could represent important reservoirs of those predators.
Resumo:
Rubber pest mites, Calacarus heveae and Tenuipalpus heveae, reach economic damage levels at the end of the rainy season and the beginning of the dry season in Brazil. Therefore, low humidity adaptation might be an important characteristic for predatory mites to successfully control pest organisms. This study determined the effect of the relative humidity (RH) levels of 30-100% on the hatching of larvae of Amblyseius acalyphus, Euseius citrifolius, Iphiseiodes zuluagai, Metaseiulus camelliae, Agistemus floridanus and Zetzellia malvinae at 25 ± 0.5°C. These predatory mites are common on rubber trees in the state of São Paulo and might be used for introduction in the major rubber tree production regions in the state of Mato Grosso. At 70% RH or higher, viability was 70% or higher for all species, indicating that their performance might be higher during the rainy season than during the dry season. Eggs of E. citrifolius and M. camelliae presented higher viability at the lower relative humidity levels than those of other species, indicating that these species might have higher chance to persist in the dry season. It is suggested that M. camelliae should be further evaluated for introduction in the state of Mato Grosso, considering that this mite is not yet present in that area. © Springer 2006.
Resumo:
Nectarivorous flower mites can reduce the volume of nectar available to pollinators. The effects of the flower mite Proctolaelaps sp. on nectar availability in flowers of a melittophilous bromeliad Neoregelia johannis (Bromeliaceae) was evaluated in a coastal rain forest in south-eastern Brazil. In a randomized block experiment utilizing 18 flower pairs, one per bromeliad ramet, pollinators (Bombus morio) and mites were excluded, and then nectar volume, sugar concentration and sugar mass were quantified over the anthesis period. Mites significantly reduced nectar volume early in the morning (6h00-8h00), but not later (10h00-12h00). Mites decreased total volume of nectar available up to 22%. Sugar concentration in nectar was higher earlier in the morning, and decreased between 10h00-12h00. The pronounced consumption of nectar by mites during the period of higher sugar concentration reduced the total amount of sugar available to pollinators by 31%. This is the first study showing that flower mites decrease nectar rewards in a melittophilous plant. Because nectar volume by itself incompletely describes nectar production rates and the effects of nectar removal by flower mites on the availability of sugar, our study highlights the inclusion of sugar content in future studies assessing the effects of thieves on nectar production rates. Copyright © 2010 Cambridge University Press.
Resumo:
Our aim was to investigate the population fluctuation and the damage caused by the phytophagous mites Calacarus heveae Feres, Tenuipalpus heveae Baker, and Eutetranychus banksi (McGregor) on clones FX 2784, FX 3864, and MDF 180 in rubber tree crops from southeastern Bahia, Brazil. Moreover, we tested for the influence of climatic variables on occurrence patterns of these species throughout weekly samples performed from October to April. The infestation peaks was between mid-January and late February. The clones FX 2784 and FX 3864 had the highest infestations and more severe damage possibly caused by C. heveae, which was the most frequent and abundant species in all clones. We found that sunlight duration and rainfall were the most important factors for C. heveae while T. heveae was affected by rainfall and temperature. Eutetranychus banksi was only affected by sunlight duration. However, the best models had low goodness of fit. We concluded that the clones FX 2784 and FX 3864 had a higher susceptibility to mite attack, and the association between climatic variables and favorable physiological conditions were determinant for the population increase of the species from January to April. © 2012 Sociedade Entomológica do Brasil.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The cohort Astigmatina is divided in two major groups: Psoroptidia, composed mainly by feather and fur mites, and Non-psoroptidia, a dominant component of the acarofauna in ephemeral habitats. In these environments Astigmatina usually are saprophages or feed on fungi or bacteria. Astigmatina protonymphs undergo a complete reorganization of the body structure leading to the production of heteromorphic deutonymphs, generally specialized for dispersion through phoresy using arthropods and vertebrates as phoronts. Although most Astigmatina occur in natural environments, some species live in anthropic environments, such as food deposits, where some of them became pests; some Astigmatina infest subterraneous plant organs. Despite their economic and ecological importance, studies on the diversity and taxonomy of Astigmatina in Brazil have been rare over the last decades. The general objective of this thesis was to collaborate to the knowledge of the diversity and to evaluate the potential practical uses of these mites in Brazil. For this, new genera and species were described, method for rearing dust mites was studied and the efficiency of Astigmatina as prey for edaphic predators was evaluated. A new species of Thyreophagus (Astigmatina: Acaridae) was described based on specimens collected in Brazil, the association of three other species of this genus with stored food was reviewed and a key to all species of this genus was prepared. The genus Neotropacarus (Astigmatina: Acaridae), commonly found on plant leaves, was reviewed with the redescription of two species and description of new species collected in Brazil and from the Philippines. Two new genera and seven new species of Acaridae associated with the bee family Apidae was described and a key to Acaridae genera in subfamily Horstiinae was prepared. Several species of Astigmatina were evaluated as prey for predatory mites Stratiolaelaps scimitus (Womersley) (Mesostigmata: Laelapidae) and Protogamasellopsis zaheri Abo-Shnaf, Castilho and Moraes (Mesostigmata: Rhodacaridae), which oviposited on all evaluated astigmatids, with Tyrophagus putrescentiae (Schrank) and Aleuroglyphus ovatus (Tropeau) (Acaridae) being the most suitable prey. Seven foods and two development period, 30 and 60 days, after the introduction of 400 females of two important dust mite species, Blomia tropicalis van Bronswijk, de Cock e Oshima and Dermatophagoides pteronyssinus (Trouessart) were evaluate. With the most suitable foods, the population growth were higher than 20.2 and 15.3 for B. tropicalis and D. pteronyssinus, respectively.
Resumo:
Processed.
Resumo:
"July 1937."
Resumo:
Predatory mites (Acari: Mesostigmata) on tree trunks without significant epiphytic growth in a subtropical rainforest in Eastern Australia were assessed for habitat specificity (i.e. whether they are tree trunk specialists or occupying other habitats) and the influence of host tree and bark structure on their abundance, species richness and species composition. The trunks of nine tree species from eight plant families representing smooth, intermediate and rough bark textures were sampled using a knockdown insecticide spray. In total, 12 species or morphospecies of Mesostigmata (excluding Uropodina sensu stricto) were collected, most of which are undescribed. Comparison with collections from other habitats indicates that epicorticolous Mesostigmata are mainly represented by suspended soil dwellers (six species), secondarily by generalists (four species) and a bark specialist (one species). A typical ground-dwelling species was also found but was represented only by a single individual. In terms of abundance, 50.5% of individuals were suspended soil dwellers, 40.7% bark specialists, and 8.3% generalists. Host species and bark roughness had no significant effect on abundance or species richness. Furthermore, there was no clear effect on species composition. The distribution of the most frequently encountered species suggests that most mesostigmatid mites living on bark use many or most rainforest tree species, independent of bark roughness. These findings support the hypothesis that some epicorticolous Mesostigmata use tree trunks as 'highways' for dispersing between habitat patches, while others use it as a permanent habitat.
Resumo:
The specific mechanisms by which selective pressures affect individuals are often difficult to resolve. In tephritid fruit flies, males respond strongly and positively to certain plant derived chemicals. Sexual selection by female choice has been hypothesized as the mechanism driving this behaviour in certain species, as females preferentially mate with males that have fed on these chemicals. This hypothesis is, to date, based on studies of only very few species and its generality is largely untested. We tested the hypothesis on different spatial scales (small cage and seminatural field-cage) using the monophagous fruit fly, Bactrocera cacuminata. This species is known to respond to methyl eugenol (ME), a chemical found in many plant species and one upon which previous studies have focused. Contrary to expectation, no obvious female choice was apparent in selecting ME-fed males over unfed males as measured by the number of matings achieved over time, copulation duration, or time of copulation initiation. However, the number of matings achieved by ME-fed males was significantly greater than unfed males 16 and 32 days after exposure to ME in small cages (but not in a field-cage). This delayed advantage suggests that ME may not influence the pheromone system of B. cacuminata but may have other consequences, acting on some other fitness consequence (e.g., enhancement of physiology or survival) of male exposure to these chemicals. We discuss the ecological and evolutionary implications of our findings to explore alternate hypotheses to explain the patterns of response of dacine fruit flies to specific plant-derived chemicals.
Resumo:
Microclimate and host plant architecture significantly influence the abundance and behavior of insects. However, most research in this field has focused at the invertebrate assemblage level, with few studies at the single-species level. Using wild Solanum mauritianum plants, we evaluated the influence of plant structure (number of leaves and branches and height of plant) and microclimate (temperature, relative humidity, and light intensity) on the abundance and behavior of a single insect species, the monophagous tephritid fly Bactrocera cacuminata (Hering). Abundance and oviposition behavior were signficantly influenced by the host structure (density of foliage) and associated microclimate. Resting behavior of both sexes was influenced positively by foliage density, while temperature positively influenced the numbers of resting females. The number of ovipositing females was positively influenced by temperature and negatively by relative humidity. Feeding behavior was rare on the host plant, as was mating. The relatively low explanatory power of the measured variables suggests that, in addition to host plant architecture and associated microclimate, other cues (e.g., olfactory or visual) could affect visitation and use of the larval host plant by adult fruit flies. For 12 plants observed at dusk (the time of fly mating), mating pairs were observed on only one tree. Principal component analyses of the plant and microclimate factors associated with these plants revealed that the plant on which mating was observed had specific characteristics (intermediate light intensity, greater height, and greater quantity of fruit) that may have influenced its selection as a mating site.