999 resultados para Plant micropropagation
Resumo:
Tissue culture techniques were applied for micropropagation of the red alga Kappaphycus alvarezii in order to select the best strain and experimental system for in vitro culture. Five strains were tested: brown (BR), green (GR) and red (RD) tetrasporophytes, brown female gametophyte (BFG), and a strain originating from tetraspore germination (""Edison de Paula"", EP). The effects of three culture media were tested on callus formation, regeneration from explants and from callus in the three tetrasporophytic and EP strains: seawater enriched with half-strength of von Stosch`s (VS 50) and Guillard & Ryther`s (F/2 50) solutions, plus synthetic ASP 12-NTA medium, with or without gelling agent. Explants of the EP strain were treated with glycerol and the phytoregulators indole-3-acetic acid (IAA); 2,4-diclorophenoxyacetic acid (2,4-D); and benzylaminopurine (BA), alone or in combination. The effects of colchicine (0.01%) during 24, 48, 72 hours and 14 days were analyzed in the BFG and EP strains. The EP strain showed the highest percentage of explants forming callus and regeneration from explants in VS 50, indicating its high potential for micropropagation in comparison to the other strains. Regeneration from callus was very rare. Treatments with glycerol and IAA:BA (5:1 mg L(-1)) stimulated the regeneration from explants. Significant differences were observed in the percentages of regeneration of EP strain explants treated with colchicine for 14 days. Our results indicate that IAA and BA stimulated the regeneration process, and that colchicine produced explants with high potential for regeneration, being useful for improving the micropropagation of K. alvarezii.
Resumo:
An in vitro protocol for Ficus carica cv. 'Roxo de Valinhos' was optimized. Nodal explants containing two buds were excised from field-grown mature plants, and transferred to different proliferation media consisting of combinations of distinct concentrations of activated charcoal with benzyladenine (BA), kinetin with gibberellic acid (GA(3)), and WPM (woody plant medium) with kinetin. The regular strength of WPM in combination with 0.5 mg l(-1) kinetin was the best condition for shoot proliferation of Ficus carica 'Roxo de Valinhos' plants. The addition of activated charcoal in the medium completely inhibited shoot proliferation. The inclusion of BA in the medium induced excessive callus formation as well as small and vitrified shoots, while GA(3) induced excessive elongation associated with vitrification, chlorosis, and tip-burned shoots.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
One of the alternatives to autoclaving culture media is chemical sterilization, which may cause fewer changes to the chemical composition of the media. In this study, the effect of chemical sterilization by inclusion of chlorine dioxide (ClO2) in the culture medium on the in vitro development of gerbera (Gerbera jamesonii) cv. AL101, cultured at different stages of micropropagation, was evaluated. The following five concentrations of ClO2 were tested: 0%, 0.0025%, 0.0050%, 0.0075%, and 0.010%. Autoclaved medium was used as the control. ClO2 in the culture medium reduced contamination at rates comparable to autoclaving when tested at three stages of the culture process: in vitro establishment, multiplication, and rooting. Plantlets grown in culture media sterilized with ClO2 showed similar or better development than those grown in autoclaved culture medium. Use of 0.0025% ClO2 to sterilize the culture medium resulted in better plantlet development than autoclaved medium, regardless of the stage of micropropagation.
Resumo:
The flower market is characterized by being both eager for novelties and highly competitive. The exploration of native species with ornamental potential represents a remarkable area of research, since it entails the introduction and development of novel promising ornamental crops. The genus Glandularia, widely distributed in Argentina, holds an enormous ornamental potential, due to the variety of colors of its inflorescences (red, violet, white, rose and lily), and extended flowering period. There is little information on tissue culture of Glandularia, thus highlighting the relevance of this research. In this work, the conditions for in vitro multiplication of G. peruviana were optimized. It was concluded that WPM supplemented with TDZ, in concentrations ranging from 1.1 to 9.0 μM, was the most adequate treatment, rendering a multiplication rate of approximately 10 de novo shoots per explant. This paper presents a protocol for the in vitro propagation of this species and introduces interesting prospects in the application of biotechnological tools to breed Glandularia.
Resumo:
Despite the socioeconomic importance of walnut trees, poor rooting and recalcitrance to in vitro culture have hampered the establishment of high-yield clonal plantations. To improve walnut micropropagation, we introduced several modifications to current methods and evaluated the effects on microshoot performance and acclimatization. Nine selected genotypes (13-year-old trees) of the commercial hybrid Juglans major 209 x J. regia were cultured in vitro on DKW-C medium supplemented with 4.4 µM BA and 50 µM IBA. A protocol was developed that relies on the use of 0.40 mM phloroglucinol during shoot multiplication, 0.20 mM previous root induction, and 6.81 mg/L Fe3+ (FeEDDHA). Moreover, the addition of 83.2 µM glucose during the root expression phase significantly improved plant survival during acclimatization. Phloroglucinol promoted microshoot elongation but inhibited rooting, especially at concentrations above 0.40 mM. Replacing FeEDTA by FeEDDHA diminished chlorotic symptoms and improved rooting, with up to 90% microshoots developing viable roots. Likewise, glucose was more efficient than sucrose or fructose in promoting plant survival. At the proposed working concentrations, neither glucose nor FeEDDHA caused any noticeable deleterious effect on walnut micropropagation. Microscopic analysis revealed the physical continuity between adventitious roots and stem pericycles. Analysis of leaf genomic DNA with eight polymorphic microsatellite markers was supportive of the clonal fidelity and genetic stability of the micropropagated material. Successful clonal plantations (over 5,800 ramets) have been established by applying this protocol.
Resumo:
Micropropagation requires controlling contamination that might compromise the success of the process. Thermal sterilization is traditionally used; however, costs deriving from equipment acquisition and maintenance render this technique costly. With the purpose of finding an alternative to thermal sterilization, this research aimed at assessing the efficiency and ideal concentration of sodium hypochlorite for sterilization of culture media and glassware used during rooting of micropropagated Gerbera hybrida cv. Essandre. Two experiments were carried out. In the first one, treatments consisted of control I (no sterilization), control II (thermal sterilization), and total active chlorine concentrations of 0.0005, 0.001, 0.002 and 0.003%. In the second experiment, based on the results observed in the first experiment, treatments consisted of control I (thermal sterilization) and II (chemical sterilization), and total active chlorine concentrations of 0.002, 0.0025 and 0.003%. Plant behavior was assessed based on the length of aerial part and roots, number of roots, and dry biomass of plants. Results showed that the addition of an active chlorine concentration of 0.003% to culture media provided total control of contaminants, and there were no significant differences regarding the variables analyzed between plants obtained with thermal sterilization and with sodium hypochlorite sterilization. Thus, chemical sterilization can be used as a replacement for thermal sterilization of nutrition media for rooting of gerbera in vitro.
Resumo:
2016
Resumo:
Purified genomic DNA can be difficult to obtain from some plant species because of the presence of impurities such as polysaccharides, which are often co-extracted with DNA. In this study, we developed a fast, simple, and low-cost protocol for extracting DNA from plants containing high levels of secondary metabolites. This protocol does not require the use of volatile toxic reagents such as mercaptoethanol, chloroform, or phenol and allows the extraction of high-quality DNA from wild and cultivated tropical species.
Resumo:
Witches' broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant-fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation.
Resumo:
Silver nanoparticles have attracted considerable attention due to their beneficial properties. But toxicity issues associated with them are also rising. The reports in the past suggested health hazards of silver nanoparticles at the cellular, molecular, or whole organismal level in eukaryotes. Whereas, there is also need to examine the exposure effects of silver nanoparticle to the microbes, which are beneficial to humans as well as environment. The available literature suggests the harmful effects of physically and chemically synthesised silver nanoparticles. The toxicity of biogenically synthesized nanoparticles has been less studied than physically and chemically synthesised nanoparticles. Hence, there is a greater need to study the toxic effects of biologically synthesised silver nanoparticles in general and mycosynthesized nanoparticles in particular. In the present study, attempts have been made to assess the risk associated with the exposure of mycosynthesized silver nanoparticles on a beneficial soil microbe Pseudomonas putida. KT2440. The study demonstrates mycosynthesis of silver nanoparticles and their characterisation by UV-vis spectrophotometry, FTIR, X-ray diffraction, nanosight LM20 - a particle size distribution analyzer and TEM. Silver nanoparticles obtained herein were found to exert the hazardous effect at the concentration of 0.4μg/ml, which warrants further detailed investigations concerning toxicity.
Resumo:
Human land use tends to decrease the diversity of native plant species and facilitate the invasion and establishment of exotic ones. Such changes in land use and plant community composition usually have negative impacts on the assemblages of native herbivorous insects. Highly specialized herbivores are expected to be especially sensitive to land use intensification and the presence of exotic plant species because they are neither capable of consuming alternative plant species of the native flora nor exotic plant species. Therefore, higher levels of land use intensity might reduce the proportion of highly specialized herbivores, which ultimately would lead to changes in the specialization of interactions in plant-herbivore networks. This study investigates the community-wide effects of land use intensity on the degree of specialization of 72 plant-herbivore networks, including effects mediated by the increase in the proportion of exotic plant species. Contrary to our expectation, the net effect of land use intensity on network specialization was positive. However, this positive effect of land use intensity was partially canceled by an opposite effect of the proportion of exotic plant species on network specialization. When we analyzed networks composed exclusively of endophagous herbivores separately from those composed exclusively of exophagous herbivores, we found that only endophages showed a consistent change in network specialization at higher land use levels. Altogether, these results indicate that land use intensity is an important ecological driver of network specialization, by way of reducing the local host range of herbivore guilds with highly specialized feeding habits. However, because the effect of land use intensity is offset by an opposite effect owing to the proportion of exotic host species, the net effect of land use in a given herbivore assemblage will likely depend on the extent of the replacement of native host species with exotic ones.