984 resultados para Plant Community
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Spatial analyses of plant-distribution patterns can provide inferences about intra- and interspecific biotic interactions. Yet, such analyses are rare for clonal plants because effective tools (i.e., molecular markers) needed to map naturally occurring clonal individuals have only become available recently. Clonal plants are unique in that a single genotype has a potential to spatially place new individuals (i.e., ramets) in response to intra- and interspecific biotic interactions. Laboratory and greenhouse studies suggest that some clonal plants can avoid intra-genet, inter-genet, and inter-specific competition via rootplacement patterns. An intriguing and yet to be explored question is whether a spatial signature of such multi-level biotic interactions can be detected in natural plant communities. The facultatively clonal Serenoa repens and non-clonal Sabal etonia are ecologically similar and co-dominant palmettos that sympatrically occur in the Florida peninsula. We used amplified fragment length polymorphisms (AFLPs) to identify Serenoa genets and also to assign field-unidentifiable small individuals as Sabal seedlings, Serenoa seedlings, or Serenoa vegetative sprouts. Then, we conducted univariate and bivariate multi-distance spatial analyses to examine the spatial interactions of Serenoa (n=271) and Sabal (n=137) within a 20x20 m grid at three levels, intragenet, intergenet and interspecific. We found that spatial interactions were not random at all three levels of biotic interactions. Serenoa genets appear to spatially avoid self-competition as well as intergenet competition. Furthermore, Serenoa and Sabal were spatially negatively associated with each other. However, this negative association pattern was also evident in a spatial comparison between non-clonal Serenoa and Sabal, suggesting that Serenoa genets’ spatial avoidance of Sabal through placement of new ramets is not the explanation of the interspecific-level negative spatial pattern. Our results emphasize the importance of investigating spatial signatures of biotic as well as abiotic interactions at multiple levels in understanding spatial distribution patterns of clonal plants in natural plant communities.
Resumo:
Throughout the Upper Great Lakes region, alterations to historic disturbance regimes have influenced plant community dynamics in hemlock-hardwood forests. Several important mesic forest species, eastern hemlock (Tsuga canadensis), yellow birch (Betula alleghaniensis), eastern white pine (Pinus strobus), and Canada yew (Taxus canadensis), are in decline due to exploitive logging practices used at the turn of the 20th century and the wave of intense fires that followed. Continued regeneration and recruitment failure is attributed to contemporary forest management practices and overbrowsing by white-tailed deer (Odocoileus virginianus). Therefore, I examined the influence of two concurrent disturbances, overstory removal and herbivory, on plant community dynamics in two hemlock-hardwood forests. I measured the post-disturbance regeneration response (herbaceous and woody species) inside and outside of deer exclosures in 20 artificial canopy gaps (50 – 450 m2) and monitored survival and growth for hundreds of planted seedlings. The results of this research show that interacting disturbances can play a large role in shaping plant community composition and structure in hemlock-hardwood forests. White-tailed deer herbivory homogenized the post-disturbance plant communities across the experimental gradient of gap areas, essentially making species compositions in small gaps “look like” those in large gaps. Deer browsing also influenced probability of survival for planted Canada yew cuttings; all else being equal an individual was nearly seven times more likely to survive if protected from herbivory (P < 0.001). In contrast, the ability of sugar maple (Acer saccharum) to persist under high levels of herbivory and respond rapidly to overstory release appears to be related to the presence of stem layering(i.e., portions of below-ground prostrate stem). Layering occurred in 52% of excavated saplings (n = 100) and was significantly associated with increased post-disturbance height growth. Understory light was also important to planted seedling establishment and height growth. Higher levels of direct under-canopy light negatively impacted survival for shade-tolerant hemlock and Canada yew, while an increase in diffuse light was linked to a higher probability of survival for yellow birch and height growth for hemlock and Canada yew. Increases in white pine height growth were also significantly associated with a decrease in canopy cover.
Resumo:
The research described in this presentation is part of the Global Observation Research Initiative in Alpine Environments (GLORIA) whose purpose is to establish and maintain a global, long-term observation network in alpine environments. Despite changes in mountaintop-vegetation due to recent climate change being observed throughout the world, trends are not consistent. Moreover, as plant communities can be impacted by several different factors, it is important to be able to separate what is due to climate change and what is due to e.g. changes in grazing pressure (see additional file below).
Resumo:
Plant communities can be affected both by arbuscular mycorrhizal fungi (AMF) and hemiparasitic plants. However, little is known about the interactive effects of these two biotic factors on the productivity and diversity of plant communities. To address this question, we set up a greenhouse study in which different AMF inocula and a hemiparasitic plant (Rhinanthus minor) were added to experimental grassland communities in a fully factorial design. In addition, single plants of each species in the grassland community were grown with the same treatments to distinguish direct AMF effects from indirect effects via plant competition. We found that AMF changed plant community structure by influencing the plant species differently. At the community level, AMF decreased the productivity by 15-24%, depending on the particular AMF treatment, mainly because two dominant species, Holcus lanatus and Plantago lanceolata, showed a negative mycorrhizal dependency. Concomitantly, plant diversity increased due to AMF inoculation and was highest in the treatment with a combination of two commercial AM strains. AMF had a positive effect on growth of the hemiparasite, and thereby induced a negative impact of the hemiparasite on host plant biomass which was not found in non-inoculated communities. However, the hemiparasite did not increase plant diversity. Our results highlight the importance of interactions with soil microbes for plant community structure and that these indirect effects can vary among AMF treatments. We conclude that mutualistic interactions with AMF, but not antagonistic interactions with a root hemiparasite, promote plant diversity in this grassland community.
Resumo:
Plant functional traits reflect different evolutionary responses to environmental variation, and among extant species determine the outcomes of interactions between plants and their environment, including other plant species. Thus, combining phylogenetic and trait-based information can be a powerful approach for understanding community assembly processes across a range of spatial scales. We used this approach to investigate tree community composition at Phou Khao Khouay National Park (18°14’-18°32’N; 102°38’- 102°59’E), Laos, where several distinct forest types occur in close proximity. The aim of our study was to examine patterns of plant community assembly across the strong environmental gradients evident at our site. We hypothesized that differences in tree community composition were being driven by an underlying gradient in soil conditions. Thus, we predicted that environmental filtering would predominate at the site and that the filtering would be strongest on sandier soil with low pH, as these are the conditions least favorable to plant growth. We surveyed eleven 0.25 ha (50x50 m) plots for all trees above 10 cm dbh (1221 individual trees, including 47 families, 70 genera and 123 species) and sampled soils in each plot. For each species in the community, we measured 11 commonly studied plant functional traits covering both the leaf and wood economic spectrum traits and we reconstructed a phylogenetic tree for 115 of the species in the community using rbcL and matK sequences downloaded from Genebank (other species were not available). Finally we compared the distribution of trait values and species at two scales (among plots and 10x10m subplots) to examine trait and phylogenetic community structures. Although there was strong evidence that an underlying soil gradient was determining patterns of species composition at the site, our results did not support the hypothesis that the environmental filtering dominated community assembly processes. For the measured plant functional traits there was no consistent pattern of trait dispersion across the site, either when traits were considered individually or when combined in a multivariate analysis. However, there was a significant correlation between the degree of phylogenetic dispersion and the first principle component axis (PCA1) for the soil parameters.Moreover, the more phylogenetically clustered plots were on sandier soils with lower pH. Hence, we suggest that the community assembly processes across our sitemay reflect the influence ofmore conserved traits that we did not measure. Nevertheless, our results are equivocal and other interpretations are possible. Our study illustrates some difficulties in combining trait and phylogenetic approaches that may result from the complexities of integrating spatial and evolutionary processes that vary at different scales.
Resumo:
The expected changes on rainfall in the next decades may cause significant changes of the hydroperiod of temporary wetlands and, consequently, shifts on plant community distributions. Predicting plant community responses to changes in the hydroperiod is a key issue for conservation and management of temporary wetlands. We present a predictive distribution model for Arthrocnemum macrostachyum communities in the Doñana wetland (Southern Spain). Logistic regression was used to fit the model using the number of days of inundation and the mean water height as predictors. The internal validation of the model yielded good performance measures. The model was applied to a set of expected scenarios of changes in the hydroperiod to anticipate the most likely shifts in the distribution of Arthrocnemum macrostachyum communities.
Resumo:
This data set describes the distribution of a total of 90 plant species growing on field margins of an agricultural landscape in the Haean-myun catchment in South Korea. We conducted our survey between July and August 2011 in 100 sampling plots, covering the whole catchment. In each plot we measured three environmental variables: slope, width of the field margin, and management type (i.e. "managed" for field margins that had signs of management activities from the ongoing season such as cutting or spraying herbicides and "unmanaged" for field margins that had been left untouched in the season). For the botanical survey each plot was sampled using three subplots of one square meter per subplot; subplots were 4 m apart from each other. In each subplot, we estimated three different vegetation characteristics: vegetation cover (i.e. the percentage of ground covered by vegetation), species richness (i.e. the number of observed species) and species abundance (i.e. the number of observed individuals / species). We calculated the percentage of the non-farmed habitats by creating buffer zones of 100, 200, 300, 400 and 500 m radii around each plot using data provided by (Seo et al. 2014). Non-farmed habitats included field margins, fallows, forest, riparian areas, pasture and grassland.
Resumo:
We address the relative importance of nutrient availability in relation to other physical and biological factors in determining plant community assemblages around Everglades Tree Islands (Everglades National Park, Florida, USA). We carried out a one-time survey of elevation, soil, water level and vegetation structure and composition at 138 plots located along transects in three tree islands in the Park’s major drainage basin. We used an RDA variance partitioning technique to assess the relative importance of nutrient availability (soil N and P) and other factors in explaining herb and tree assemblages of tree island tail and surrounded marshes. The upland areas of the tree islands accumulate P and show low N concentration, producing a strong island-wide gradient in soil N:P ratio. While soil N:P ratio plays a significant role in determining herb layer and tree layer community assemblage in tree island tails, nevertheless part of its variance is shared with hydrology. The total species variance explained by the predictors is very low. We define a strong gradient in nutrient availability (soil N:P ratio) closely related to hydrology. Hydrology and nutrient availability are both factors influencing community assemblages around tree islands, nevertheless both seem to be acting together and in a complex mechanism. Future research should be focused on segregating these two factors in order to determine whether nutrient leaching from tree islands is a factor determining community assemblages and local landscape pattern in the Everglades, and how this process might be affected by water management.
Resumo:
Large-extent vegetation datasets that co-occur with long-term hydrology data provide new ways to develop biologically meaningful hydrologic variables and to determine plant community responses to hydrology. We analyzed the suitability of different hydrological variables to predict vegetation in two water conservation areas (WCAs) in the Florida Everglades, USA, and developed metrics to define realized hydrologic optima and tolerances. Using vegetation data spatially co-located with long-term hydrological records, we evaluated seven variables describing water depth, hydroperiod length, and number of wet/dry events; each variable was tested for 2-, 4- and 10-year intervals for Julian annual averages and environmentally-defined hydrologic intervals. Maximum length and maximum water depth during the wet period calculated for environmentally-defined hydrologic intervals over a 4-year period were the best predictors of vegetation type. Proportional abundance of vegetation types along hydrological gradients indicated that communities had different realized optima and tolerances across WCAs. Although in both WCAs, the trees/shrubs class was on the drier/shallower end of hydrological gradients, while slough communities occupied the wetter/deeper end, the distribution ofCladium, Typha, wet prairie and Salix communities, which were intermediate for most hydrological variables, varied in proportional abundance along hydrologic gradients between WCAs, indicating that realized optima and tolerances are context-dependent.
Resumo:
This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2009, vegetation cover was estimated twice in May and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2009, in addition to the four community level cover estimates, cover of the moss layer was estimated.